

Generation of Test Oracle Using Meta Heuristic
Search Technique

Krishna Vir Singh

Department of Computer Science & Engineering
IIMT College of Engineering, Gr. Noida, Uttar Pradesh, India

Dr. Deepak Kumar Singh

Department of Computer Science & Engineering
Sachdeva Institute of Technology, Mathura, Uttar Pradesh, India

Dr. Brij Mohan Singh

Department of Computer Science & Engineering
College of Engineering, Roorkee, Uttrakhand, India

Abstract- It is extremely important that the software to be delivered to the user should be reliable and fault free. This
ranges software testing as one of the most important, challenging and dominating activity in the software development life
cycle and hence consequent improvement in its usefulness, both with respect to the time and resources, is taken as a key
factor by many researchers. An imperative measure of the software testing process is running and evaluating test
scenarios. The aim of this part is to assess how well the software under test conforms to its specifications. One of the
conducts to achieve this is to generate the test cases and make use of the test oracle to regulate whether a given test case
exposes a fault. This procedure incorporates a lot of time. It is very difficult to develop correct, good and unique test cases
manually. Use of an automated oracle can achieve the reduction in software testing time and hence the reduction of the
cost of the testing process. The use of the Meta Heuristic algorithms has been proposed as a tool for software testing.
Optimization is a ubiquitous and spontaneous process which is an integral part of our daily life. Meta Heuristic
Algorithms are widely used to tackle black box global optimization problems when no prior knowledge is available.
Differential Evolution (DE) is a well-known evolutionary algorithm for solving global optimization problems. Its
performance is quite dependent on setting of its control parameters. DE has mainly three control parameters namely,
mutation factor (F), crossover rate (CR) and population size (NP). Mutation operator plays a very important role in any
evolutionary algorithm. This operator helps to increase search diversity and avoids stagnation in local optima. The main
contribution of this thesis report is automatic test oracle design using Neural Network. It uses an extension of differential
evolution, called as Modified Differential Evolution (MDE) for test data generation. The performance of Differential
Evolution has been improved by introducing a new mutation operator in MDE so that its convergent rate and robustness
can be improved. This MDE is applied for solving Travelling Salesman Problem (TSP). The results obtained are fed as an
input to train the neural network and then this trained neural network behaves as an automated test oracle. Experimental
results show that proposed (MDE) is better and comparable to the other variants of differential evolution. The
performance of MDE is analyzed on 30 benchmark functions for four different dimensions viz. 10, 30, 50,100 described in
Congress on Evolutionary Computing -2014.

Keywords – Software Testing, Test case automation, Test oracles, Evolutionary Algorithms, Neural Network, Modified
Differential Evolution Algorithm, Optimization, Travelling Salesman Problem.

I. INTRODUCTION
Software Testing is a costly and time consuming activity in software development process. Testing involves

examining the behavior of a system in order to realize latent faults. Determining the desired correct behavior for a
given input is called the oracle problem. For the excellence of the test, the scheming of test cases is important. Test
data are generated and testers manually add test oracles and provide a common scenario in software testing.
Although completely automatic testing is undecidable problem, conditional or partial automatic testing is quite
feasible. Many testing activities can be automated, test cases generation, oracle augmentation, verification, etc.

International Journal of Latest Trends in Engineering and Technology (IJLTET)

Vol. 5 Issue 4 July 2015 325 ISSN: 2278-621X

After an inclusive study made on the existing literature, a lot of limitations/gaps have been found in the area of
Software Testing:

Mainstream works reported for software testing problems have been dealt with statement testing, path
testing, branch testing and data flow testing which have their own limitations. Hence an additional attention is
required towards a new approach of testing.

Hybridization of local search and heuristic techniques has been done in most of work. There is restricted
effort towards hybridization of META heuristic algorithms in software testing. Hence more prominence is required
towards this issue.

Optimized use of various soft computing techniques to reduce time and cost of software testing process is a
promising area of research. Development of heuristic and Meta heuristic are still the major issues related to software
testing to automate the testing process to a greater extent.

 The work presents the use of an artificial neural network as an automated oracle for Travelling Salesman
Problem. A neural network is trained by the back propagation algorithm on a set of test cases applied to the original
version of the system. The network training is based on the “black-box” approach, since only inputs and outputs of
the system are presented to the algorithm. The trained network can be used as an artificial oracle for evaluating the
correctness of the output produced by new and possibly faulty versions of the program.

 The test data for neural network were generated using Modified Differential Evolution (MDE), an extension
of differential evolution algorithm, on Travelling Salesman problem. MDE improves optimization performance by
implementing mutation strategy “DE/current-to-pbest” with optional external archive and updating control parameters
in an adaptive manner. The parameter adaptation automatically updates the control parameters to appropriate values
and avoids a user’s prior knowledge of the relationship between the parameter settings and the characteristics of
optimization problems. It is thus helpful to improve the robustness of the algorithm.

II. PREVIOUS WORK
Although Travelling Salesman Problem(TSP) is an old problem, but due to its nature of classic NP-complete

combinatorial problem, it intrigues the researchers even today. Due to the vast literature behind the attempts to solve
TSP—specific application-orientated approach or generalized approach, it is a cumbersome job to summarize all of
those research in short span. Hence, attempt is made here just to have a glimpse of the trends in solving Tsp via
time-period. This attempt may reflect only a subset of those research work, but for a brief introduction to the
attempts at solving TSP- a slight overview of the trends may be satisfactory.

M. Bellmore and G. L. Nemhauser[3] summarized major trends of solving TSP till the first half century of
the 20th century. They have classified the attempts under following categories of algorithmic approach according to
solution generation approach:
A. Tour-to-Tour Improvement:

The starting point is an arbitrary tour, say to= (1, 2, n, 1). The solution generation scheme is a rule for

finding a better tour that is a 'neighbor' of the present tour. For example, t 1 is the best of the tours that can be
generated by interchanging any element 1=2,..., n with 1 . If t1 = (p, 2,.. n, p) then t2 is the best tour that can be
generated by interchanging i= 1…n, i p, with p. A termination rule could be to stop whenever no improvement can
be made. We could then choose any other to and repeat the iterative scheme or apply another, more sophisticated,
scheme.

B. Tour Building:

The starting point is an arbitrary node, say i1. From i, we build a sequence (i1. i2. ik) by successively
including other nodes into the sequence. The procedure terminates when a tour is achieved. A very simple scheme of
this type is the 'nearest neighbor' rule. From i1 proceed to the nearest node i2, from i2 proceed to the nearest node not
yet reached not (i1 or i2) from in return to il. Clearly, this method of tour building is approximate and there are many
variations of the 'nearest neighbor' rule.

International Journal of Latest Trends in Engineering and Technology (IJLTET)

Vol. 5 Issue 4 July 2015 326 ISSN: 2278-621X

C. Subtour Elimination:

The starting point is an optimal solution to the assignment problem under the matrix C. If the solution to
the assignment problem is a tour, it is optimal for the travelling salesman problem. If the optimal solution to the
assignment problem is not a tour, an iterative scheme is used to eliminate sub tours.

Several algorithms that have produced impressive results. These include:

Branch-and-bound
Dynamic programming
Integer programming
Gilmore – Gomory method
Tour to tour approximation

The later research work tried to improve upon these suggested algorithm paths as in [4].
The trend of research in solving TSP focused on nature inspired algorithm during last decade of 20th century and
first decade of 21st century. In [5] Zhang evolves that TSP in NP-Hard, recent theoretical research shows a
randomized algorithm are designed to the optimal tour in O (n (log n) O (c)) time for every fixed c. The
researchers have been either attempting to develop optimization algorithms. Therefore it would seem to be an ideal
candidate for nonstandard algorithm approach, such as natural computation. Natural computation is the
computational version of the process of extracting ideas from nature to develop computational system. Those that
the inspiration from nature for the development of novel problem solving techniques. These natural computational
include artificial life, DNA computing, and so on, several solving mechanism via ANN, GA and ACO have been
pointed out in the survey paper [5].
 Recent survey papers on the advances and current trends in solving TSP by evolutionary methods
differential evolution can be seen in [7]. Since, the thesis work deals with solving TSP in part of its proposed
work, hence, a brief collection of works to reflect trends in last two decades of so in solving TSP. This is necessary
to demonstrate the difficulty of optimization in TSP that generalized satisfactory TSP solution still attracts the
researchers. This is not an all inclusive list just a compilation of recent trends as shown in Table 1.

Table 1: Summary of the CEC 14 Test Function

 No Function Fi
* =

Fi(x*)

Unimodel
Function

1 Rotated High Conditioned Elliptic Function 100
2 Rotated bent Ciger Function 200
3 Rotated Discuss Function 300

Simple
Multunod

al
Functions

4 Shifted and Rotated Rosenbrock’s Function 400
5 Shifted and Rotated Acklev's Function 500
6 Shifted and Rooted Weierstrass Function 600
7 Shifted and Rotated Gnewank's Function 700
8 Shifted Rastrwin's Function 800
9 Shifted and Rotated Rastricrin s Function 900
10 Shifted Schwefe1's Function 1000
11 Shifted and Rotated Schwefel-s Function 1100
12 Shifted and Rotated Katsuura Function 1200
13 Shitled and Rotated HappyCat Function 1300
14 Shifted and Rotated HGBat Function 1400
15 Shifted and Rotated Expanded Griewank's plus Rose.nbrock's Function 1500
16 Shifted and Rotated Expanded Scaffei's F6 Function Hybrid Function 1600

Hybrid
Function

17 Hybrid Function 1 (N=3') 1700
18 Hvbnd Function 2 (N=3) 1800
19 Hybrid Function 3 (N=4) 1900
20 Hybrid Function 4 (N=4) 2000

International Journal of Latest Trends in Engineering and Technology (IJLTET)

Vol. 5 Issue 4 July 2015 327 ISSN: 2278-621X

21 Hybrid Function 5 (N=5) 2100
22 Hybrid Function 6 (N=5 2200

Compositi
on

Function

23 Composition Function 1(N=5) 2300
24 Composition Function 2(N=3) 2400
25 Composition Function 3(N=3) 2500
26 Composition Function 4(N=5) 2600
27 Composition Function 5(N=5) 2700
28 Composition Function 6(N=5) 2800
29 Composition Function 7(N=3) 2900
30 Composition Function 8(N=3) 3000

Search Range [-100,100]

III. PROPOSED ALGORITHM
 PROPOSED FRAMEWORK

The performance of differential evolution depends quietly on the setting of control parameters such as the
mutation factor (F) and the crossover probability (CR) according to both experimental studies and theoretical
analysis. Due to this consideration, different adaptive or self adaptive mechanisms have been introduced to
dynamically update the control parameters without a user’s prior knowledge of the relationship between the
parameters setting and the characteristic of optimization problems.

In addition, the parameter adaptation, if well designed, is capable of improving an algorithms convergence
performance by dynamically adapting the parameters to characteristic of different fitness landscapes and the
convergence rate can be improved if the control parameters are adapted to appropriate values at different evolution
stages of a specific problem Other than the best solution in the current population, historical data is another source
that can be used to improve the convergence performance.

The proposed framework in differential evolution algorithm works basically on two general principles
which can take into account to develop an efficient mutation operator. They are:

What to mutate?
How to mutate?

ADAPTIVE MUTAION CONSTANT
In population based search and optimization methods, considerably high diversity is necessary during the early

part of the search to utilize the full range of the search space. On the other hand during the later stages, when the
algorithm is converging to an optimal solution fine tuning is important to find the global optimum efficiency.
Considering these issues, we propose a new strategy for performance improvement of Differential Evolution.
Instead of fixing the value of mutation constant F to a particular value, we make it to be linearly adaptive. The tips
of the trial vectors are pointed to simple diverse zones of the search space during the early stages of the search. To
meet this objective the value the value of the scale factor has been chosen to very linearly with time as the algorithm
proceeds. The value of mutation constant F can be used as F = f(xi, g) – f(xpbest,g) / f(xpbest,g)
PROPOSED ALGORITHM

The computational steps of the proposed modified differential evolution (MDE) are as follows:
Algorithm

01 Begin
02 Set NPP=20*D, μCR=0.5;
03 Create a random initial population {xi,0|i=1,2,..NP}
04 Find the gbest =min(Fitness of population)
05 For g= 1 to G
06 P=0.05, NP =100;
07 For i-1 to NP
08 Generate Cri= randni (μCR, o.1)
09 Randomly Choose xp best , g as one of the 100p% best
 vectors
10 Randomly choose xr1, g_=xi,g from current population R
11 Randomly choose xr2, g_=xr1,g_=xi,g from P U A
12 calculate F as (f(xig)-f(xpbest,g))/f(xpbest,g);

International Journal of Latest Trends in Engineering and Technology (IJLTET)

Vol. 5 Issue 4 July 2015 328 ISSN: 2278-621X

13 vi,g = xi,g +Fi·(xpbest,g –xi,g)+Fi·(xr1,g - ~xr2,g)
14 generate jrand= randint(1,D)
15 for j= 1 to D
16 if j=jrand or rand(0,1)<CRi
17 uj,I,g = vj,I,g
18 else
19 uj,I,g= xj,I,g
20 end if
21 end for
22 if f(xi,g) f(ui,g)
23 xi,g+1=xi,g
24 else
25 xi,g+1=ui,g; xi,g A; CRi SCR, Fi SF
26 end if
27 end for
28 Randomly remove solutions from A so that |A| NP
29 μCR = (1-c) · μCR+ c· meanA(SCR)
30 Calculate F as (f(xig)- f(xpbest,g))/f(xpbest,g);
31 End for
32 End

EFFECT OF FITNESS BASED ADAPTIVE MUTATION

Fitness based mutation helps to tune the balance between the convergence rate and the robustness of the
algorithm. Using fitness information in the mutation operator, we bias the solution in the direction of lowest function
value. Using this method it is found that the convergence velocity of the Differential Evolution is locally accelerated
so that better solutions are obtained within a accepted convergence time. The key sense of this adaptive mutation is
that during the early stages. It is important to explore the whole search space otherwise the best global solutions may
be skipped and in later stages it is important to adjust the movements of trial solutions finely so that they can explore
the interior of a relatively small space in which the suspected global optimum lies. By making the mutation constant
to be time varying this can be achieved. This time varying parametric adaptation scheme attempts to achieve a better
tradeoff between the explorative and the exploitative tendencies of Differential Evolution.
 TSP USING MDE

Now consider a TSP with pop size 200, number of cities 50 and maximum number of iteration are 10000. A
sample run of TSP using MDE is shown in figure. The given algorithm is run 100 times and the Best Tour result
obtained after these 100 runs with city number and distances between the cities are feed to neural network using NN
toolbox to train the neural network. Now the neural network behaves as TEST Oracle and can be tested by providing
appropriate set of inputs and outputs. For this algorithm is as follows:

Procedure of solving TSP using MDE
1. Begin
2. Create an initial set of xy coordinates for 50 cities
3. Create an initial population of size 200*2
4. For g = 1 to numIter
5. Evaluate each population member (Calculate total distance)
6. Sort the total distance in ascending order
7. For i=1 to NP
8. Randomly choose xp best, g as one of the 100p % best vectors.
9. Randomly choose xr1, g_ = xi, g from current population P.
10. Randomly choose ~xr2, g = xr1, g = xi, g from P U A
11. Calculate F as (f(xig) – f(xpbest, g))/f(xpbest,g);
12. Vi,g = xi,g+Fi · (xpbest,g –xi,g)+Fi · (xr1,g- ~xr2)
13. Add the mutated childs received from the mutation in the initial

 population by replacing the weaker ones.
14. End

International Journal of Latest Trends in Engineering and Technology (IJLTET)

Vol. 5 Issue 4 July 2015 329 ISSN: 2278-621X

15. End
16. Best Tour

IV.RESULT
In this discussion, Modified Differential Evolution algorithm is applied to minimize a set of 30 congress on

Evolutionary Computing (CEC) 2014 benchmark functions of dimensions D=10, 30, 50 and 100 as shown in table
3,4,5 and 6. MDE is compared with three adaptive Differential Evolutionary (DE) Algorithms JADE, GaAPADE, L-
SHAPE and evolutionary algorithm UMOEAS. Summarized in Table 1 are the 30 benchmark functions. All these
functions have an optimal value f* = 0. Parameter setup values of these functions are depicted in table 2.

In all simulate on, we have set the population size NP to be 100 for the values of D, D=10, 30, 50 and 100,
while maximum number of function evaluation are 1000D (Max_FES for 10D =100000; for 30D=300000; for
50D=500000; for 100D =1000000). All results reported in this section are obtained based on 51 independent runs.

Table 2: Parameter Setup values

S.no Test Function D NP MaxGen
1 Ellipsoidal Function 10,30,50,100 100 100000, 3000, 50000, 1000000
2 Bent Cigar Function 10,30,50,100 100 100000, 3000, 50000, 1000000
3 Discuss Function 10,30,50,100 100 100000, 3000, 50000, 1000000
4 Rosenbrock Function 10,30,50,100 100 100000, 3000, 50000, 1000000
5 Ackley Function 10,30,50,100 100 100000, 3000, 50000, 1000000
6 Weierstrass Function 10,30,50,100 100 100000, 3000, 50000, 1000000
7 Griewank Function 10,30,50,100 100 100000, 3000, 50000, 1000000
8 Rastrigin Function 10,30,50,100 100 100000, 3000, 50000, 1000000
9 Step Rastrigin Function 10,30,50,100 100 100000, 3000, 50000, 1000000
10 Schwefel Function 10,30,50,100 100 100000, 3000, 50000, 1000000
11 Schwefel F-7 Function 10,30,50,100 100 100000, 3000, 50000, 1000000
12 Katsuura Function 10,30,50,100 100 100000, 3000, 50000, 1000000
13 Happycat Function 10,30,50,100 100 100000, 3000, 50000, 1000000
14 Hagbat Function 10,30,50,100 100 100000, 3000, 50000, 1000000
15 Griewank-RosenBrock 10,30,50,100 100 100000, 3000, 50000, 1000000
16 Escaffer6 Function 10,30,50,100 100 100000, 3000, 50000, 1000000
17 Hybrid Function 01 10,30,50,100 100 100000, 3000, 50000, 1000000
18 Hybrid Function 02 10,30,50,100 100 100000, 3000, 50000, 1000000
19 Hybrid Function 03 10,30,50,100 100 100000, 3000, 50000, 1000000
20 Hybrid Function 04 10,30,50,100 100 100000, 3000, 50000, 1000000
21 Hybrid Function 05 10,30,50,100 100 100000, 3000, 50000, 1000000
22 Hybrid Function 06 10,30,50,100 100 100000, 3000, 50000, 1000000
23 Composition Function 1 10,30,50,100 100 100000, 3000, 50000, 1000000
24 Composition Function 2 10,30,50,100 100 100000, 3000, 50000, 1000000
25 Composition Function 3 10,30,50,100 100 100000, 3000, 50000, 1000000
26 Composition Function 4 10,30,50,100 100 100000, 3000, 50000, 1000000
27 Composition Function 5 10,30,50,100 100 100000, 3000, 50000, 1000000
28 Composition Function 6 10,30,50,100 100 100000, 3000, 50000, 1000000
29 Composition Function 7 10,30,50,100 100 100000, 3000, 50000, 1000000
30 Composition Function 8 10,30,50,100 100 100000, 3000, 50000, 1000000

a. Comparison of MDE with other Evolutionary Algorithms

The mean of the result obtained by each algorithm for f1-f30 are summarized in tables 3,4,5 and 6. These
statistics are calculated for f1-f30, for 1000 iterations.

Important observations about the convergence rate and reliability of different algorithms can be made from the
results presented in Tables IV and V. First, these results suggest that the overall convergence rate of MDE is average
for D=10 having 11 best results among all for functions f2, f4, f7, f9, 123, f26, f27, f28, f30. MDE achieves the best
performance in the case of high dimensional problems (D =50 and 100). For D=30, MDE performs best for
functions f2, f5, f23- f30. For D=50, MDE performs best for functions f 1- f7, f 13, f15, f23-f30. For D=100, MDE
performs best for functions best for functions f5, f12, f19, f23-26, f28-30. It can also be concluded for figures 21 and
22 that the MDE performs well for composite functions and for higher dimension problems.

B. Parameter values of MDE

International Journal of Latest Trends in Engineering and Technology (IJLTET)

Vol. 5 Issue 4 July 2015 330 ISSN: 2278-621X

MDE introduces its own parameter F, (calculated by extracting 100p% from the population known as pbest,
finding their fitness values subtracting these fitness values from the fitness values of xi,g selected randomly from
population of size again 100p% and normalizing obtained values by dividing these values by fitness values of xp

best,g
which determine the greediness of the mutation strategy. It is believed that these two parameters are problem
insensitive according to their roles in MDE, it is thus an advantage over the problem-dependent parameter selection
(F and CR) in the classic DE. However, it is still interesting to find a range of these parameters which is appropriate
for different problems.

 Now this extension is applied to solve travelling salesman problem. The results obtained after a single run of
the MDE is shown below:

Table 3: Experimental Results of 10 dimensional problem f1-f30, Averaged over 51 independent runs.

Fun. Gen MIDE JADE GaAPADE L-SHAPE UMOEAS
F1 1000 6.28e+07 4.55e+07 6.7e+07 1.79e+03 8.38e+07
F2 1000 2.05e+09 3.3e+09 4.2e+09 3.19e+09 5.28e+09
F3 1000 1.7e+04 3.35e+04 5.94e+04 4.65e+04 1.75e+04
F4 1000 3.49e+02 3.97e+02 3.8e+02 3.56e+02 6.6e+02
F5 1000 20.57 20.6 20.68 20.6 20.72
F6 1000 10.15 10.10 10.7 10.4 11.18
F7 1000 57.82 59.59 61.57 52.12 85.93
F8 1000 77.13 68.26 78.85 72.19 83.33
F9 1000 63.27 76.73 82.28 80.08 74.88
F10 1000 1.4e+03 1.50e+03 1.80e+03 1.79e+03 1.5e+03
F11 1000 1.7e+03 1.8e+03 1.95e+03 1.79e+03 1.95e+03
F12 1000 1.71 2.0 2.41 2.45 2.45
F13 1000 2.16 2.36 2.45 2.22 2.99
F14 1000 6.89 15.28 16.05 14.24 22.76
F15 1000 1.3e+02 1.5e+03 3.54e+03 1.84e+03 8.76e+03
F16 1000 4.47 3.95 4.03 4.07 4.18
F17 1000 5.91e+05 1.13e+06 1.43e+06 9.14e+05 5.95e+05
F18 1000 8.1e+04 2.89e+06 5.5e+06 4.01e+06 1.55e+06
F19 1000 38.46 13.33 14.05 14.78 20.72
F20 1000 1.7e+04 7.2e+04 2.15e+05 1.37e+05 1.15e+05
F21 1000 1.18e+06 2.2e+05 3.09e+05 1.84e+05 2.99e+05
F22 1000 2.6e+02 2.4e+02 3.04e+02 2.59e+02 3.07e+02
F23 1000 2.08e+02 3.8e+02 4.1e+02 3.93e+02 2.34e+02
F24 1000 2.00e+02 1.9e+02 2.02e+02 1.97e+02 1.98e+02
F25 1000 2.00e+02 2.03e+02 2.06e+02 2.05e+02 1.99e+02
F26 1000 2.00e+02 1.01e+02 4.27e+02 1.01e+02 1.02e+02
F27 1000 2.12e+02 3.26e+02 1.01e+02 4.15e+02 3.6e+02
F28 1000 2.19e+02 1.02e+03 4.7e+02 1.03e+03 3.6e+02
F29 1000 7.1e+06 1.13e+06 5.5e+05 1.36e+06 2.77e+06
F30 1000 1.24e+06 1.31e+04 1.45e+04 1.57e+04 2.8e+04

Table 4: Experimental Results of 30 dimensional problem f1-f30, Averaged over 51 independent runs.

Fun. Gen MIDE JADE GaAPADE L-SHAPE UMOEAS
F1 1000 3.47e+08 7.24e+08 1.08e+09 1.1.e+09 7.18e+08
F2 1000 1.75e+10 4.29e+10 4.87e+10 5.60e+10 4.19e+10
F3 1000 8.24e+04 9.01e+04 1.8e+05 1.75e+06 8.40e+04
F4 1000 2.35e+03 5.81e+03 8.28e+03 1.63e+05 5.87e+03
F5 1000 20.85 21.0 21.06 8.78e+03 21.14
F6 1000 36.92 38.9 40.49 21.13 40.36
F7 1000 1.7e+02 3.78e+02 4.7e+02 42.23 3.74e+02
F8 1000 2.80e+02 3.09e+02 3.07e+02 4.94e+02 3.194e+02
F9 1000 2.8e+02 3.69e+02 3.86e+02 3.53e+02 3.47e+02
F10 1000 6.5e+03 6.57e+03 7.36e+03 7.74e+03 7.2e+03
F11 1000 7.5e+03 7.67e+03 7.87e+03 7.74e+03 8.04e+03
F12 1000 2.015 3.25 3.91 7.74e+03 7.2e+03
F13 1000 3.43 5.30 5.61 6.04 5.05
F14 1000 68.5 1.40e+02 1.58e+02 1.77e+02 1.37e+02
F15 1000 4.5e+03 3.07e+05 1.30e+06 8.06e+05 1.05e+05
F16 1000 13.98 13.47 13.59 13.66 13.67
F17 1000 1.9e+07 3.18e+07 5.78e+07 5.50e+07 3.55e+07
F18 1000 5.9e+08 8.17e+08 1.76e+09 1.63e+09 8.24e+08
F19 1000 1.13e+02 2.25e+02 3.18e+02 3.26e+02 2.58e+02

International Journal of Latest Trends in Engineering and Technology (IJLTET)

Vol. 5 Issue 4 July 2015 331 ISSN: 2278-621X

F20 1000 1.29e+05 1.18e+05 4.9e+05 3.35e+05 1.61e+05
F21 1000 8.9e+06 9.47e+06 1.87e+07 1.85e+07 1.06e+07
F22 1000 1.6e+03 1.29e+03 1.7e+03 1.64e+03 1.39e+03
F23 1000 2.17e+02 5.53e+02 7.86e+02 7.34e+02 2.78e+02
F24 1000 2.02e+02 3.46e+02 3.89e+02 3.80e+02 2.07e+02
F25 1000 2.00e+02 2.58e+02 2.8e+02 2.87e+02 2.01e+02
F26 1000 2.00e+02 1.05e+02 1.05e+02 1.11e+02 1.07e+02
F27 1000 2.29e+02 9.20e+02 1.3e+02 1.25e+03 6.39e+02
F28 1000 2.3e+02 5.02e+03 2.8e+03 5.72e+03 6.39e+02
F29 1000 2.08e+07 1.24e+08 4.3e+07 2.05e+08 8.63e+07
F30 1000 1.39e+06 8.61e+05 1.33e+06 4.07e+02 9.78e+05

Table 5: Experimental Results of 50 dimensional problem f1-f30, Averaged over 51 independent runs.

Table 6: Experimental Results of 100 dimensional problem f1-f30, Averaged over 51 independent runs.
Fun. Gen MIDE JADE GaAPADE L-SHAPE UMOEAS
F1 1000 6.59e+09 3.66e+09 0 8.35e+09 1.8e+09
F2 1000 7.35e+09 2.13e+11 0 3.57e+11 1.11e+11
F3 1000 7.5e+07 4.15e+05 0 5.88e+05 3.01e+05
F4 1000 1.29e+05 4.32e+04 0 1.00e+05 1.68e+04
F5 1000 21.42 21.3 0 21.40 21.39
F6 1000 1.5e+03 1.49e+02 0 1.63e+02 1.5e+02
F7 1000 3.35e+03 1.94e+03 0 3.23e+03 1.03e+03
F8 1000 1.59e+03 1.27e+03 0 1.56e+03 1.14e+03
F9 1000 9.77e+02 1.48e+03 0 4.07e+02 1.24e+03
F10 1000 3.2e+04 2.70e+04 0 3.15e+04 2.87e+04
F11 1000 3.18e+04 3.06e+04 0 3.24e+04 2.8e+04
F12 1000 7.76 4.15 0 5.06 4.24
F13 1000 10.01 7.42 0 9.94 5.46
F14 1000 5.4e+02 4.37e+02 0 3.86e+02 2.36e+02
F15 1000 1.1e+03 1.53e+03 0 6.52e+07 1.4e+06

Fun. Gen MIDE JADE GaAPADE L-SHAPE UMOEAS
F1 1000 3.47e+08 1.18e+09 2.56e+09 2.64e+09 1.24e+09
F2 1000 1.89+10 7.70e+10 1.0e+11 1.35e+11 6.63e+10
F3 1000 1.40e+05 4.15e+05 2.9e+05 2.70e+05 1.255e+05
F4 1000 2.48e+03 1.49e+04 2.83+04 3.49e+04 1.20e+04
F5 1000 20.69 21.1 21.20 21.27 21.26
F6 1000 55.54 67.3 72.01 75.96 70.40
F7 1000 1.57e+02 7.38e+02 1.06e+03 1.30e+03 6.33e+02
F8 1000 4.89e+02 5.42e+02 5.48e+02 6.82e+02 5.67e+02
F9 1000 5.2e+02 6.41e+02 7.37e+02 8.06e+02 6.33e+02
F10 1000 1.18e+04 1.17e+04 1.38e+04 1.42e+04 1.34e+04
F11 1000 1.18e+04 1.35e+04 1.44e+04 1.48e+04 1.44e+04
F12 1000 1.61 3.50 4.75 4.70 3.82
F13 1000 2.05 5.73 6.55 7.79 5.33
F14 1000 38.57 1.95e+02 2.66e+02 3.48e+02 1.22e+02
F15 1000 1.04e+04 1.35e+06 9.19e+06 9.11e+06 1.11e+06
F16 1000 22.74 22.92 23.41 23.35 23.26
F17 1000 7.06e+07 9.91e+07 2.16e+08 2.80e+08 9.93e+07
F18 1000 2.3e+09 2.17e+09 6.6e+09 7.78e+09 1.77e+09
F19 1000 3.37e+02 4.45e+02 9.6e+02 1.06e+03 4.37e+02
F20 1000 1.1e+05 1.34e+05 9.06e+05 7.10e+05 1.91e+05
F21 1000 1.25e+07 2.10e+07 7.27e+07 6.96e+07 2.76e+06
F22 1000 3.25e+03 2.74e+03 4.14e+03 5.34e+03 2.79e+03
F23 1000 2.15e+02 8.16e+02 1.5e+03 1.54e+03 2.89e+02
F24 1000 2.04e+02 4.64e+02 5.9e+02 5.96e+02 2.14e+02
F25 1000 2.00e+02 3.29e+02 1.13e+02 4.34e+02 2.02e+02
F26 1000 2.00e+023 1.22e+02 2.3e+03 3.09e+02 1.29e+02
F27 1000 2.2e+02 2.13e+03 6.7e+03 2.40e+03 6.98e+02
F28 1000 2.3e+07 9.69e+03 6.58e+02 1.23e+04 9.02e+02
F29 1000 2.08e+07 4.17e+08 252650000 1.03e+09 1.71e+08
F30 1000 1.24e+06 4.17e+06 6.06e+06 1.27e+07 4.28e+06

International Journal of Latest Trends in Engineering and Technology (IJLTET)

Vol. 5 Issue 4 July 2015 332 ISSN: 2278-621X

F16 1000 46.37 47.1 0 47.62 47.59
F17 1000 1.8e+08 39437153 0 1.08e+09 2.2e+08
F18 1000 2.26e+09 9.93e+09 0 3.07e+10 2.7e+09
F19 1000 5.15e+02 1.88e+03 0 5.45e+03 9.2e+02
F20 1000 3.89e+05 1.02e+06 0 3.38e+06 5.07e+05
F21 1000 3.9e+07 1.63e=08 0 4.62e+08 9.07e+07
F22 1000 73.10 6.96e+03 0 3.49e+04 5.7e+03
F23 1000 2.08e+02 1.62e+03 0 3.54e+03 2.7e+02
F24 1000 2.06e+02 8.73e+02 0 1.20e+03 2.24e+02
F25 1000 2.00e+02 6.21e+02 0 9.68e+02 2.02e+02
F26 1000 2.00e+02 4.51e+02 0 7.77e+02 1.98e+02
F27 1000 1.18e+03 3.26e+02 0 4.98e+03 3.63e+02
F28 1000 1.36e+03 2.42e+04 0 3.02e+06 7.68e+02
F29 1000 3.5e+08 1.76e+06 0 1.36e+06 1.96e+08
F30 1000 5.99e+07 3.02e+07 0 1.11e+08 1.7e+07

V. CONCLUSION

In this paper we have developed an extension of differential evolution algorithm, called as Modified
Differential Evolution (MDE). We have tested the performance of the proposed algorithm for 30 benchmark
functions discussed in Congress on Evolutionary Computing (CEC) -2014 for 10, 30, 50, 100 dimensions.

The algorithm works comparably for the three versions of differential evolution L-SHADE, JADE and
GaAPADE and an evolutionary algorithms viz. UMOEA for 10 dimensions, but it works better than these
algorithms for dimensions 30, 50 and 100 for most of the functions. This modified algorithm has been applied to
solve travelling salesman problem.

 The results obtained are feed as an input to the neural network to train the network. Now this trained
network behaves as an automated oracle for testing. The neural network is shown to be a promising method of
testing software application provided that the training data have a good coverage of the input range. The back
propagation method of training the neural network is a relatively rigorous method capable of generalization, and one
of its properties ensures that the network can be updated by learning new data.

REFERENCES

[1] L. Baresi, M. Pezz. An Introduction to Software Testing. Electronic Notes in Theoretical Computer Science 148 (2006) 89111
[2] E. Diaz, J. Tuya, R. Blanco. Automated software testing using a meta heuristic technique based on tabu search. Proceedings of 18th IEEE

International Conference on Automated Software Engineering, 2003, pp. 310313.
[3] S. R. Schach. Testing: Principles and Practice. ACM Computing Surveys, Vol. 28, No. 1, March 1996.
[4] T. Mantere, J.T. Alander. Evolutionary software engineering, a review. Applied Soft Computing 5 (2005) 315331.
[5] P. McMinn. Search-Based Software Testing: Past, Present and Future. In the Proceedings of 2011 Fourth International Conference on

Software Testing, Verification and Validation Workshops.
[6] M. Catelani, L. Ciani , V. L. Scarano, A. Bacioccola. Software automated testing: A solution to maxi-mize the test plan coverage and to

increase software reliability and quality in use. Journal of Computer Standards & Interfaces 33 (2011) 152158.
[7] G. Fraser, A. Zeller. Mutation-Driven Generation of Unit Tests and Oracles. IEEE Transactions on Software Engineering (Volume:38 ,

Issue: 2) March-April 2012.
[8] M. A. Ahmeda, I. Hermadib. GA-based multiple paths test data generator. Computers & Operations Research 35 (2008) 3107 3124
[9] J.A. Whittaker. What is software testing? And why is it so hard?. IEEE Software 17 (2000) 7079
[10] S. R. Shahamiri, W. M. N. W. Kadir, S. Ibrahim, S. Z. M. Hashim. An automated framework for software test oracle. (In press as: S.R.

Shahamiri et al., An automated framework for software test oracle, Inform. Softw. Technol. (2011))
[11] L. A. Zadeh. "Fuzzy logic, neural networks, and soft computing". Communications of the ACM, Vol. 37, pp. 77-84, 1994.
[12] T. Weise, M. Zapf, R. Chiong, A. J. Nebro. Nature-Inspired Algorithms for Optimization Series: Studies in Computational Intelligence,

Vol. 193 (2009).
[13] I. H. Osman and G. Laporte. Meta heuristics: a bibliography. Annals of Operational Research, Vol. 63 (1996) 513-628. Meta heuristics in

Combinatorial Optimization Editors: G. Laporte and LK Osman. Baltzer Science Publications, The Netherlands.
[14] A. K. Dhingra, Multi-objective flow shop scheduling using metaheuristics, Ph. sham, 2011.
[15] J.H. Holland. Genetic Algorithm. Scientific American July 1992.
[16] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning Addison-‘$‘Wesley, 1989.
[17] J. Kennedy and R. Eberhart, Particle swarm optimization, IEEE International Conference on Neural Networks, IEEE Press, pp. 19421948,

1995
[18] N. Narmada and D. P. Mohapatra Automatic Test data generation for data flow testing using Particle Swarm Optimization,

Communications in Computer and Information Science, Vol. 95, No. 1, pp. 1-12, • 2010.
[19] R. Storn, K. Price. Differential Evolution – A simple and efficient adaptive scheme for global opti-J. Globtd Optimization, vol. 11, no. 4,

pp. 341359, 1997.
[20] E. Mezura-Montes, J. Vel azquez-Reyes and C. A. C. Coello. A Comparative Study of Differential Evolution Variants for Global

Optimization". ACM proceedings from GECC006, July 812, 2006, Seattle, Washington, USA.

International Journal of Latest Trends in Engineering and Technology (IJLTET)

Vol. 5 Issue 4 July 2015 333 ISSN: 2278-621X

[21] V. Feoktistov and S. lanaqi. Generalization of the Strategies in Differential Evolution. In Proceedings of the 18th International Parallel and
Distributed Processing Symposium (1PDPS 2004), 2004, Santa Fe, New Mexico, USA, page 165a, New Mexico, USA, April 2004. IEEE
Computer Society.

[22] K. V. Price. An introduction to differential evolution. InD. Come, M. Dorigo, and F. Glover, editors, New Ideas in Optimization, pages
79108. Mc Graw-Hill, UK, 1999.

[23] R. Storm Differential evolution design of an 11R-filter with requirements for magnitude and group de-lay. In Proceedings of 1FFF
International Conference on Evolutionary Computation (10EC96), pages 268273 New York, NY, USA, May 1996JEEE.

[24] B. V. Babu and S. A. Munawar. Optimal Design of Shell-and-114*e Heat Exchangers by Different Strategies of Differential Evolution. .11-
chnical Report P1LAN1-33.4 031. Department of Chemical Engineering Birla Institute of Technology and Science. Rajasthan. India.. 2001.

[25] A. Qin and P. Suganthan. Self-adaptive Differential Evolution Algorithm for Numerical Optimization. In Proceedings of the Congress on
Evolutionary Computation 2005 (CEC2005), volume 1, pages 630636. Piscataway New Jersey. September 2005. Edinburgh, UK., IFRF.
Service Center.

[26] J. Vesterstrom and R. Thomsen. A Comparative Study of Differential Evolution Particle Swarm Optimization and Evolutionary Algorithms
on Numerical Benchmark Problems. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC2004), volume 3, Pages
19801987, Piscataway, New Jersey, June 2004. Portland Oregon, USA, IFFF. Service Center.

[27] J. Ronkkonen. S. Kukkonen, and K. V. Price. Real-Parameter Optimization with Differential Evolution. In Proceedings of the Congress on
Evolutionary Computation 2005 (CEC2005), volume 1. pages 567574, Piscataway, New Jersey, September 2005. Edinburgh, UK„ IFFE
Service Center.

[28] S. Kukkonen and J. Lampinen. GDE3: The third Evolution Step of Generalized Differential Evolution. In Proceedings of the Congress on
Evolutionary Computation 2005 (CEC2005), volume 1, pages 239246, Piscataway, New Jersey, September 2005. Edinburgh, UK„ IEEE
Service Center.

[29] W. J. Zhang and X.-F. Xie. DEPSO: Hybrid Particle Swarm with Differential Evolution Operator. In Proceedings of the JEFF International
Conference on Systems, Man and Cybernetics (SMC2003), volume 4, pages 38163821. Washington DC, USA, !REF., October 2003.

[30] N. Noman and H. Iba. Enhancing Differential Evolution Performance with Local Search for High Dimensional Function Optimization. In
H.-G. e. Beyer, editor, Proceedings of the Genetic and Evolutionary Computation Conference (GECCO2005), pages 967974, New York,
June 2005. Washington DC, USA, ACM Press.

[31] L. T. Bui, Y. Shan, F. Qi, and H. A. Abbass. Comparing Two Versions of Differential Evolution in Real Parameter Optimization. Technical
Report TR-ALAR-200504009, School of Information Technology and Electrical Engineering, University of New South Wales, Northcott
Drive, Campbell, Canberra, ACT 2.

International Journal of Latest Trends in Engineering and Technology (IJLTET)

Vol. 5 Issue 4 July 2015 334 ISSN: 2278-621X

