Energy and expectation values of excited states for Helium atom using Hartree-Fock approximation

Rukia Jaber Dosh
Department of Physics, College of Science, University of Kufa, Iraq
E-mail: rukiadosh@yahoo.com

Abstract

Some radial atomic properties and excited states energies are obtained using two electron density function $D\left(r_{1}, r_{2}\right)$ to solve Hartree-Fock equations using Slater type orbitals for Helium atom (He-atom) in different excited states (1S2S, 1S3S, 1S4S, 1S5S). Radial expectation values for one electron $\left\langle\mathbf{r}_{1}\right\rangle$ and two electrons $\left\langle{ }_{12}\right\rangle$, repulsion $\langle V e e\rangle$, attraction $\langle V e n\rangle$, potential \rangle, kinetic 〈 >, and Hartree-Fock energies are calculated using partitioning technique.

Keywords - Hartree-Fock-Roothaan method, Slater type orbitals, two electron density function, radial expectation values, Helium atom

I. INTRODUCTION

Roothaan Hartree Fock (RHF) method is one of the simplest approximations for calculations of various properties of multi electron of atomic and molecules systems not only for ground state but also for excited states [1]. Many literature reviews are addressed this subject [2-4]. In this study, one electron basis whose radial part is expanded in terms of Slater type orbitals for examined some atomic properties of He -atom in the excited states using Hartree Fock equations. In the Roothaan Hartree Fock or basis set expansion method, the Slater type orbitals (STO) defined as [5]

$$
\begin{equation*}
\chi_{\mathrm{nlm}}\left(\xi, \mathrm{r} \quad \sum \frac{2 \xi \quad \overline{2}}{(2 n!\overline{2}} r^{\mathrm{n}} \quad \exp -\xi r \mathrm{Y}_{\mathrm{lm}}(\theta, \phi\right. \tag{1}
\end{equation*}
$$

where, $\mathrm{Y}_{\operatorname{lm}}(\theta, \phi=$ a spherical harmosnic, $\xi>0=$ the orbital exponent, $\mathrm{n}=\mathrm{a}$ positive principal quantum number of (STO). The determination of nonlinear parameters n and ξ is very important for describing the atomic orbitals.

II. THEORY

Most of the physically properties of a multi electron system can be calculated from the two-particle reduced density matrix $\Gamma \quad, \quad$, without reference to the wavefunction . It is contains all the necessary information to compute the energy and many properties of the atoms. It can be gained by integrating the spin and spatial coordinates of all electrons except two electrons (,n) from the N -particle density matrix, so the two-electron reduced density matrix $\Gamma \quad, 2$ given by $[6,7]$.

$$
\Gamma\left(\begin{array}{llllll}
& , 2 & \ldots & , 2, \ldots . & \left.\right|^{2} \quad \ldots . \tag{2}
\end{array}\right.
$$

where $=\left(r, s\right.$ is combined space and spin variable with $s \quad \begin{array}{lllllllllll} & s p & n & \operatorname{por} \beta & \text { sp } & n & & n\end{array}$

III. Expectation values

Expectation value for one-electron $\left\langle\mathrm{r}^{\mathrm{n}}\right\rangle$ is determined by the following expression [8]

$$
\begin{equation*}
\left\langle\mathrm{r}^{\mathrm{m}}\right\rangle \quad{ }^{\infty} \mathrm{D}\left(\mathrm{r} \quad \mathrm{r}^{\mathrm{m}} \mathrm{dr}\right. \tag{3}
\end{equation*}
$$

where $\mathrm{m}=$ integer number $(-2 \leq \mathrm{m} \leq 2, \mathrm{D}(\mathrm{r}=$ the one-electron radial density function which represents the probability density function to finding an electron at a distance between r_{1} and $r_{1}+d r_{1}$ from the coordinate origin (i.e nucleus). The single-electron radial density $D\left(r_{1}\right)$ is obtained from integration over two-electron radial density function $D\left(r_{1}, r_{2}\right)$ and defined as $[9,10]$.

$$
\begin{equation*}
\mathrm{D}\left(\mathrm { r } \quad \mathrm { D } \left(\mathrm{r}, \mathrm{r}_{2} \mathrm{dr}_{2}\right.\right. \tag{4}
\end{equation*}
$$

where $\quad\left(r, r_{2}\right.$ is the two-electron radial density function and represents the probability density that one electron is located at a radius r_{1} and the other electron at a radius r_{2} simultaneously. The two-electron radial density function is given by [11].
$\mathrm{D}\left(\mathrm{r}, \mathrm{r}_{2}=\iint \Gamma\left(\mathrm{r}_{1}, \mathrm{r}_{2}\right) \mathrm{r}^{2} \mathrm{r}_{2}^{2} \mathrm{ds} \mathrm{ds}_{2} \mathrm{~d} \Omega \mathrm{~d} \Omega_{2}\right.$
$d \Omega \quad \sin \theta d \theta d \emptyset$
where $\Omega=$ the solid angle . Inter particle expectation value $\left\langle\mathrm{r}^{\mathrm{m}}\right\rangle$ is shown in Eq. 6 [12]

$$
\begin{equation*}
\left\langle r_{2}^{\mathrm{m}}\right\rangle \quad{ }^{\infty} \mathrm{f}\left(\mathrm{r}_{2} \mathrm{r}^{\mathrm{m}}{ }_{2} \mathrm{dr}{ }_{2}\right. \tag{6}
\end{equation*}
$$

where r_{12} represents the distance between two-electrons. ($r_{2}=$ radial electron-electron distribution function, which describes the probability of finding two electrons separated by distance $r{ }_{2}$ from each other. Pair distribution function can be written as [13].

$$
\begin{equation*}
\mathrm{f}\left(\mathrm { r } _ { 2 } \quad 8 \pi ^ { 2 } \mathrm { r } _ { 2 } \quad { } ^ { 2 } \mathrm { rdr } \quad { } _ { 2 } ^ { 2 } \Gamma \left(\mathrm{r}, \mathrm{r}_{2} \mathrm{r}_{2} \mathrm{dr}_{2} \quad{ }_{2}^{\infty} \mathrm{r} \mathrm{dr}{ }_{2}^{2} \quad \Gamma\left(\mathrm{r}, \mathrm{r}_{2} \mathrm{r}_{2} \mathrm{dr}_{2}\right.\right.\right. \tag{7}
\end{equation*}
$$

IV. Expectation Energy value〈 >

Hartree-Fock method satisfied the virial theorem. The virial theorem is necessary condition for the stationary state, the condition of the virial theorem is [14],

$$
\begin{equation*}
\rangle 2\rangle 0 \tag{8}
\end{equation*}
$$

where $\rangle=$ the total expectation value of potential energy and \rangle is the expectation value of kinetic energy. From the virial theorem find:

$$
\begin{array}{ccc}
\rangle & \rangle & \rangle \\
\rangle & -\langle \rangle & \rangle \tag{10}\\
2
\end{array}
$$

Expectation value of potential energy is proportion with the expectation values of $\langle r\rangle$ and $\left\langle r_{2}\right\rangle$, respectively [16].
$\left\rangle-\langle r\rangle\left\langle r_{2}\right\rangle\right.$

V. RESULTS AND DISCUSSION

In the present study, different excited states of He-atom are analyzed. The configurations (1S2S, 1S3S, 1S4S, 1S5S) states are examined using Hartree-Fock wave function. Table 1 shows the expectation values of one electron $\left\langle r^{m}\right\rangle$, where m takes integer values $(-2,-1,1,2)$ for K -shell to different excited states. Table 2 represents the expectation values for another electron in $2 \mathrm{~S}, 3 \mathrm{~S}, 4 \mathrm{~S}$, and 5 S states. Table 3 summarizes the expectation values for inter electrons $\left\langle\mathrm{r}{ }_{2}^{\mathrm{m}}\right\rangle$.

Table 1: One particle expectation value $\quad r^{m} \quad$ in K-shell of 1 S state in different excited states for He -atom

states	r^{2}	r	r	r^{2}
1 S2S	8.13006	2.02080	0.74772	0.81469
1 S3S	8.05643	2.00882	0.75852	0.95634
1 S4S	8.02208	2.00346	0.75816	1.02022
1 S5S	8.01082	2.00170	0.75705	1.07832

Table 2: One particle expectation value r^{m} in different excited states for He -atom.

States	r^{2}	r	r	r^{2}
1S2S	0.08628	0.24583	04.78795	26.44061
1S3S	0.02967	0.11546	11.26221	144.09095
1S4S	0.01214	0.06430	21.04786	498.519449
1S5S	0.00608	0.04092	33.82797	1282.05952

Table 3: Inter particle expectation values r^{m} 2 for He -atom for different excited states.

states	$r{ }^{2}$	$r:$	$r:$	$r^{2}:$
1S2S	0.08061	0.24524	4.85022	27.25531
1S3S	0.02598	0.11533	11.533	145.04641
1S4S	0.01045	0.06425	21.06211	499.50842
1S5S	0.0052	0.04089	33.82096	1282.34489
states	r^{2}	$r:$	$r:$	$r^{2}:$
1S2S	0.08061	0.24524	4.85022	27.25531
1S3S	0.02598	0.11533	11.533	145.04641
1S4S	0.01045	0.06425	21.06211	499.50842
1S5S	0.0052	0.04089	33.82096	1282.34489

Fig. 1 shows the one electron radial density function $D\left(r\right.$ as a function of r_{1} for He -atom in 1S2S, 1S3S, 1S4S, and 1S5S states, which represents the probability density of finding the one electron in the 1 S state for these states, these probabilities are close to each other. Fig. 2 illustrates the one electron radial density function D (r for other electron in $2 \mathrm{~S}, 3 \mathrm{~S}, 4 \mathrm{~S}$, and 5 S states separated by distance r_{1} from the nucleus. There is one peak (the most probability of finding the electron) for 2 S state, while there are two peaks in excited 3 S state. The $1^{\text {st }}$ peak represents the most probability of finding an electron in the 2 S state with the small probability. Whereas, the $2^{\text {nd }}$ peak represents the most probability of finding an electron in the 3 S state with the larger probability. 4 S state shows 3 peaks ($1^{\text {st }}, 2^{\text {nd }}$, and $3^{\text {rd }}$ peaks). These peaks represent the small probability of finding an electron in the $2 \mathrm{~S}, 3 \mathrm{~S}$, and 4 S , respectively. The $2^{\text {nd }}$ peak larger than the $1^{\text {st }}$ peak and the $3^{\text {rd }}$ peak larger than $1^{\text {st }}$ and $2^{\text {nd }}$ peaks. The similar conclusion is obtained when examined the 5 S state, which it has 4 peaks.

Figure 1. One-particle radial density function for one electron in the 1 S state for excited He -atom.

Figure 2. One-particle radial density function for the second electron in the (2S, 3S, 4S, 5S) states for excited He-atom.

Table 3 showed the results of expectation values of attraction $\langle V \quad \underset{n}{ }$, repulsion $\langle V\rangle$, expectation values of potential $\langle V\rangle$, kinetic $\langle T\rangle$, and Hartree-Fock E energies of He-atom for different excited states.

Table 3: Repulsion $\langle V e e\rangle$, attraction $\langle V e n\rangle$, potential \rangle, kinetic \rangle, and Hartree-Fock E energies of He-atom for different excited states

States	$-e e$	$e e$	-V	T	-E
1S2S	4.53328	0.24524	4.28804	2.14402	2.14402
1S3S	4.24860	0.11533	4.13327	2.066635	2.066635
1S4S	4.13544	0.06425	4.07119	2.035595	2.035595
1S5S	4.08404	0.04089	4.04315	2.021575	2.021575

VI. CONCLUSION

This study shows that the radial expectation values for one electron and two electrons effect on different excited states for He -atom in the Hartree-Fock method. There is one peak for 2 S state, while there are two peaks in excited $3 S$ state. The first peak represents the most probability of finding an electron in the 2 S state with the small probability. Whereas, the second peak is represents the most probability of finding an electron in the 3 S state with the larger probability. The 4 S state shows 3 peaks ($1^{\text {st }}, 2^{\text {nd }}$, and $3^{\text {rd }}$ peaks) and these peaks represent the small probability of finding an electron in the $2 \mathrm{~S}, 3 \mathrm{~S}$, and 4 S , respectively, the $2^{\text {nd }}$ peak larger than $1^{\text {st }}$ peak and the third peak larger than those two peaks. It concluded that the 5 S state also has 4 peaks.

ACKNOWLEDGMENT

The author acknowledges the financial support of the College of Science of the University of Kufa. The author is grateful to Dr. Basim A. Almayahi, Department of Environment, College of Science, University of Kufa for assisting me throughout conducting the present research.

REFERENCES

[1] Roothaan C.C., J. Rev. Mod. Phys, V. 32 (1960).
[2] Weiss A.W., J. National Bureau of standards, V.138, 1262-1276, (1963).
[3] Weiss A. W., Krauss M., J. Chem. Phys., V. 52, No.9, (1970).
[4] Fischer C. F., Saxena K. M., Physical Review A, V.12, NO. 6 (1975).
[5] Guseinov I.I., Merturk, Sahin E., J. Phys, V. 76, No. 1, 109-117, (2011).
[6] Koga T., Kawata Y., J. Chemical Physics,V. 117, No. 20, 9133-9137 (2002).
[7] Koga T., Matsuyama H., J. Chemical Physics, V. 120, No. 17, 7831-7836 (2004)
[8] Chen C., J. The European Physical D, V. 56, 303-309 (2010).
[9] Koga T., Matsuyama H., J. Theor. Chem. Acc.,V. 115, 59-64 (2006).
[10] Matsuyama H., Koga T., J. Computational Applied Mathematics, V. 233, 1584-1589 (2010).
[11] Koga T., Matsuyama H., J. Theor Chem Acc,V. 118, 931-935 (2007).
[12] Dressel P. R., King F. W., J. Chemical physics, V. 100, No. 10, 7515-7522 (1994).
[13] Moiseyev N., J. Katriel, Boyd R. J., J. Theoretica Chimica Acta, V. 45, 61 - 67 (1977).
[14] Oyamada T., Hongo K., Kawazoe Y., Yasuhara H., J. Chemical Physics, V. 133, No. 164 (2010) 164113-1 to 164113-19.
[15] Sen K. D., Reddy V. S., J. Chemical Physics, V. 81, No. 5213 (1984) 5213-5214.

