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Abstract- A batch arrival retrial queue with balking and reneging is considered. If an arriving batch finds 
the server free, then one of the customers receives the service immediately and others join the orbit. 
Otherwise the batch has the option to join the orbit or to leave the system. The server provides two phases 
of service essential and optional. The server is subject to breakdown while it is working. The repair of the 
failed server starts instantaneously. After completion of the repair, the server is not allowed to accept new 
customers until the interrupted customer leaves the system. Whenever the orbit is empty the server takes 
atmost J vacations repeatedly until at least one customer appears in the orbit on return from a vacation. 
Using generating function technique, the steady state distributions of the server state and the number of 
customers in the orbit are obtained along with performance measures. Reliability indices of the system 
are obtained. Special cases are discussed. Numerical results are presented.
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INTRODUCTION

Retrial queueing systems are characterized by the feature that arriving customers who cannot receive 
service immediately may join a virtual queue called orbit to try their request after some random time. Review of 
retrial queueing literature can be found in the survey papers of Yang and Templeton (1987) and Falin (1990), 
the bibliographies of Artalejo (1999a, 1999b) and the books by Falin and Templeton (1997) and Artalejo and 
Gomez Corral (2008).

Queues with server subject to breakdowns and repairs are often encountered in many practical 
applications. Wang et al. (2001) considered M/G/1 retrial queue with server breakdown and obtained explicit 
expressions for availability, failure frequency and reliability function of the server.     Li et al. (2006) analysed 
BMAP/G/1 retrial queue with server breakdowns and repairs. Atencia et al. (2008) studied a batch arrival retrial 
queue with exponential retrial time and server breakdown. Choudhury and Deka (2008) discussed a Poisson 
input queueing system wherein the server delivers a second phase of optional service and server subject to 
breakdown and repair. Falin (2010) investigated an M/G/1 retrial queue with an unreliable server and general 
retrial time with the help of embedded Markov chain. Using matrix geometric method, Kalyanaraman and 
Seenivasan (2010) analysed a multi-server retrial queueing system with unreliable server in which service time 
distribution is negative exponential. 

As a generalization of the single and multiple vacation policy, Ke and Chang (2009) introduced the 
concept of J vacations in M/G/1 retrial queueing system. Chang and Ke (2009) extended the model to batch 
arrival retrial queues. Using supplementary variable technique Jain and Charu Bhargava (2009) obtained the 
probability generating function of the steady state queue size at random epoch for an M/G/1 retrial queueing 
system with modified vacation and K phase repair. Chen et al. (2010) discussed retrial queue with modified 
vacation and server breakdown which has potential applications in a packet switched network.

The present investigation provides an extensive analysis of two phase batch arrival retrial queue with 
impatient customers, server breakdown and modified vacation. The necessary and sufficient condition for the 
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system to be stable is obtained. The explicit expressions of the steady-state probabilities, performance measures 
and reliability indices are derived. Special cases are deduced.

II. MODEL DESCRIPTION

Consider a single server queueing system in which customers arrive in batches according to compound 
Poisson process with rate l. The batch size Y is a random variable with distribution function P(Y = k) = Ck, 
k = 1, 2, ¼,  the probability generating function C(z) and first two moments m1 and m2.

If the server is free, then one of the arriving customers receives the service immediately and others join 
the orbit. Otherwise all the customers join the orbit with probability p or leave the system with probability p    
(= 1 – p). The customer access from the orbit to the server is governed by an arbitrary law with distribution 
function A(x) and Laplace Stieltjes transform ).s(A * If a primary customer arrives first, then the retrial 
customer cancels the attempt for service and either returns to its position  in  the  orbit  with probability q or 
leaves the system with probability q (= 1 – q).

There are two phases of heterogeneous service essential and optional. Essential service is provided to 
all the arriving customers. As soon as the essential service is completed the customer may leave the system  

with  probability  r0  or  opt  the  optional  service with probability 0r (= 1 – r0). The service time of ith phase 

follows an arbitrary distribution with distribution function Bi(x), Laplace Stieltjes transform )(sBi
* and the first 

two moments mi1 and mi2, i = 1, 2. 
The server is subject to breakdown while it is working. It is assumed that the lifetime of the server in ith

phase is exponential with rate ai. The repair time of the server failed during ith phase service is generally 
distributed with distribution function Ri(x), Laplace Stieltjes transform )(sRi

* and the first two moments gi1, gi2,  

i = 1, 2.
When the server fails during ith phase service, the interrupted customer remains in the service position 

with probability qi or leaves the service area with probability 1 – qi and keeps returning at times exponentially 
distributed with rate ti, i = 1, 2. If the interrupted customer is not in the service position, then after the 
completion of the repair, the server waits for the same customer to continue the service. The server is not 
allowed to accept new customers until the interrupted customer leaves the system. Whenever the system 
becomes empty, the server leaves for a vacation of random length. On return from vacation if there is no 
customer in the orbit, the server takes another vacation. This pattern continues until the server returning from 
vacation finds atleast one customer in the system. Number of consecutive vacations is limited to J. At the end of 
Jth vacation even if the system is empty the server stays in the system. The vacation times are generally 

distributed with distribution function V(x), Laplace Stieltjes transform *V (s) and the first two moments n1 and 
n2.

The state of the system at time t can be described by the Markov process {X(t), t ³ 0} = {S(t), N(t), 
x1(t), x2(t)}, where S(t) denote the server state 0, 1, 2, 3, 4, 5, 6, j+6 according as the server being idle, busy in 
essential service, busy in optional service, under repair during essential service, under repair during optional 
service, in reserved time during essential service, in reserved time during optional service and in jth vacation (1 £
j £ J). N(t) denotes the number of customers in the orbit at time t. Define the supplementary variables x1(t) and 
x2(t) as follows.

If S(t) = 0, x1(t) = elapsed retrial time 
If S(t) = 1, 2, x1(t) = elapsed service time 
If S(t) = 3, 4, x1(t) = elapsed service time and x2(t) = elapsed repair time
If S(t) = 5, 6, x1(t) = elapsed service time and x2(t) = elapsed reserved time
If S(t) = j + 6, x1(t) = elapsed vacation time, 1 £ j £ J.

The functions h(x), m1(x), m2(x), b1(x), b2(x) and n(x) are the conditional completion rates for repeated 
attempts, essential service, optional service, repair during essential service, repair during optional service and 
vacation respectively. Then
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III. GOVERNING EQUATIONS 

For the process {X(t), t ³ 0} define the following probabilities
I0(t) = P{S(t) = 0, X(t) = 0} 
In(x, t) dx = P{S(t) = 0, X(t) = n, x £ x1(t) < x + dx}, x ³ 0, n ³ 1
Pn(x, t) dx = P{S(t) = 1, X(t) = n, x £ x1(t) < x + dx}, x ³ 0, n ³ 0
Qn(x, t) dx = P{S(t) = 2, X(t) = n, x £ x1(t) < x + dx}, x ³ 0, n ³ 0
F1,1,i,n(x, y, t) dx dy = P{S(t) = 3, X(t) = n, x £ x1(t) < x, y £ x2(t) < y + dy}, x ³ 0, n ³ 0, i = 0, 1
F1,2,i,,n(x, y, t) dx dy = P{S(t) = 4, X(t) = n, x £ x1(t) < x, y £ x2(t) < y + dy}, x ³ 0, n ³ 0, i = 0, 1
F2,1,n(x, y, t) dx dy = P{S(t) = 5, X(t) = n, x £ x1(t) < x, y £ x2(t) < y + dy}, x ³ 0, n ³ 0
F2,2,n(x, y, t) dx dy = P{S(t) = 6, X(t) = n,  x £ x1(t) < x, y £ x2(t) < y + dy}, x ³ 0, n ³ 0
Vj,n(x, t) dx = P{S(t) = j + 6, X(t) = n, x £ x1(t) < x + dx}, x ³ 0, n ³ 0, 1 £ j £ J
i = 0 means the interrupted customer is in service position and i = 1 means the customer is not in the service 
position.

The system of steady state equations that governs the model under consideration is

l I0 = ò
¥

0

J,0 )(V x n(x) dx                            (1)

dx
d In(x)  = - (l + h(x)) In(x),     n ³ 1             (2)

dx
d

P0(x) = - (p l + a1 + m1(x)) P0(x) + ò
¥

0

1,1,0,0 )y,(F x b1(y) dy + t1 ò
¥

0

2,1,0 )y,(F x dy                  (3)

dx
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¥

0

n1,1,0, )y,(F x b1(y) dy 
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k 1
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0
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k 1
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with boundary conditions
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IV. STABILITY CONDITION

The necessary and sufficient condition for the system to be stable is 

p l m1 [m11 (1 + a1 (g11 + 
1

11- )) + 0r m21 (1 + a2 (g21 +
2

21-
))] + (1 – ))(A l* m1 < 1 + q (1 – ))(A l*

V. GENERATING FUNCTIONS OF THE ORBIT LENGTH

Define the probability generating functions
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Theorem  1

The stationary distribution of the process {X(t), t ³ 0} has the following generating functions
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I0 = D1 / D2                                                                                                      (34)
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J
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D1  =  2 - [p l m1 m11(1 + a1 (g11 + 
1
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21- ))]
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Proof

Multiplying equations (2) to (13) by zn, summing over n for n = 1, 2, 3, ¼ and solving the resultant partial 
differential equations, we get
I(x, z)  =  I(0, z) e-lx (1 – A(x))                                                 (35)
P(x, z) = P(0, z) C(z))x(1 ppke -- (1 – B1(x))                   (36)

Q(x, z) = Q(0, z) C(z))x(2 ppke -- (1 – B2(x))                         (37)
F1,1,0(x, y, z) = F1,1,0(x, 0, z) e-pl(1-C(z))y (1 – R1(y))                           (38)
F1,1,1(x, y, z) = F1,1,1(x, 0, z) e-pl(1-C(z))y (1 – R1(y))                          (39)
F1,2,0(x, y, z) = F1,2,0(x, 0, z) e-pl(1-C(z))y (1 – R2(y))                          (40)
F1,2,1(x, y, z) = F1,2,1(x, 0, z) e-pl(1-C(z))y (1 – R2(y))                       (41)
F2,1(x, y, z) = F2,1(x, 0, z) yzCpe ]))(1([ 1+--                (42)

F2,2(x, y, z) = F2,2(x, 0, z) yzCpe ]))(1([ 2+--                 (43)
Vj(x, z) = Vj(0, z) e-pl(1 – C(z))x (1 – V(x)), 1 £ j £ J             (44)
Similarly equations (14) to (23) yield
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I(0, z) = P(0, z) [r0
*
1B (k1 (p l - p l C(z))) + 0r

*
1B (k1 (p l - p l C(z)))

*
2B (k2 (p l - p l C(z)))] + T1(z) - l I0                       (45)

P(0, z) =
)z(T)z(Tz

C(z)]z)1(z)(T)z([T

32
2

120

-

+-Il                     (46)

Q(0, z)      = 0r P(0, z) *
1B (k1 (p l - p l C(z)))                       (47)

F1,1,0(x, 0, z) = P(0, z) a1 q1
C(z))xp(k1 -- pe (1 – B1(x))                       (48)

F1,1,1(x, 0, z) = P(0, z) a1 (1 – q1) 
C(z))xp(k1 -- pe (1 – B1(x))                       (49)

F1,2,0(x, 0, z) = 0r P(0, z) a2 q2
*
1B (k1 (p l - p l C(z)))  C(z))xp(k2 -- pe (1 – B2(x))                      (50)

F1,2,1(x, 0, z) = 0r P(0, z)a2 (1–q2) 
*
1B (k1 (p l - p l C(z))) C(z))xp(k2 -- pe (1 – B2(x))                     (51)

F2,1(x, 0, z) = P(0, z)a1(1–q1)  
*
1R (p l - p l C(z)) C(z))xp(k1 -- pe (1 – B1(x))                                 (52)

F2,2(x, 0, z) =    0r P(0,z)a2(1–q2)
*
1B (k1(pl-plC(z))) *

2R (pl-plC(z)) C(z))xp(k2 -- pe (1–B2(x))        (53)

At n = 0, equation (13) becomes

 x¶
¶

Vj, 0(x) = - (p l + n(x)) Vj,0(x)

úû
ù

êë
é ++
¶
¶

(x)p
 x

Vj,0(x)  =  0                                                              (54)

On solving equation (54), we get
Vj,0(x)  =  Vj,0(0) e-plx(1 – V(x)), 1 £ j £ J                                 (55)
Using equations (25) and (55), we obtain

Vj(0, z)  =  Vj,0(0)=
1

0

)]([ +-*

I
jJpV

, j = 1, 2, ¼, J – 1                                 (56)

Substituting equation (56) in equation (44), we obtain

Vj(x, z)  =  
1

0

)]([ +-*

I
jJpV

e-p l(1 – C(z))x (1 – V(x)), 1 £ j £ J        (57)

Integrating equation (57) with respect to x we get equation (33).
Using the equations (45), (46) and (47) in equations (35), (36) and (37) and integrating with respect to x we get 
equations (26) to (28).
Substituting the expressions in equations (46) and (48) - (53) in equations (38) - (43) and integrating with 
respect to x and y we get the required results in (29) to (32). Using normalising condition, I0 can be obtained as 
in equation (34). 

Corollary 1

The probability generating function of the number of customers in the orbit is

Pq(z) =  
C(z))p(p))(T)((

))))](A(1C(z))(1p1(z)((T(z)T))(TC(z)(z
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(58)

Proof

The probability generating function of the number of customers in the orbit is

Pq(z)   =   I0 + I(z) + P(z) + Q(z) + å å
= =
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ù
ê
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é
+

2

1k

1

0i
k2,ik,1, )(F)(F zz + å
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J
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z
1

j )(V

By substituting equations (26) to (34) and simplifying we get equation (58).

Corollary 2

The probability generating function of the number of customers in the system is

PS(z)=
C(z))p(p))(T)((

))))](A(1C(z))(1p1(zz))(1(z)T(z)((T(z)T))(T
C(z)(zC(z))p(1)(Az))(TC(z))pp(z(z))(TC(z)[(z

32
2

2
3213

320

--

-----++
--++---I

*

*

zzTz

zz
zz

     

(59)
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Proof

The probability generating function of the number of customers in the system is given by 

PS(z)   =   I0 + I(z) + z 
ú
ú
û

ù

ê
ê
ë

é
ú
û

ù
ê
ë

é
+++ å å

= =

2

1k

1

0i
k2,ik,1, )(F)(FQ(z))( zzzP + å

=

J

j

z
1

j )(V

with the help of equations (26) to (34) and by direct substitution we get equation (59).

VI. PERFORMANCE MEASURES

· The server is idle in non empty system with probability
I =

1
lim
®z

I(z)   

= I0 (1 – A*(l)) [m1 + p l m1 m11 (1 + a1 (
1

11- + g11)) + 0r p l m1 m21

                                        (1 + a2 (g21 + 
2

21- ))+ N – 1] / D1                                          (60)

· The server is busy with probability
S =

1
lim
®z

(P(z) + Q(z))

= l I0 (m11 + 0r m21) [1 + m1 + N – (A*(l) + (1 – A*(l)) (m1 + q))] / D1                             (61)

· The server is under repair with probability
F =

1
lim
®z

(F1,1(z) + F1,2(z))

= l I0 (a1 m11 g11 + 0r a2 m21 g21) [1 + m1 + N – (A*(l) + (1 – A*(l)) (m1 + q))] / D1            (62)

· The server is on vacation with probability

V =
1

lim
®z
å
=

J

j

z
1

j )(V    

=
J

J

))((V))((1
))((1

ppV
pV

**

*

-
- l I0 n1                                           (63)

· The mean queue length is given by

Lq =
1

lim
®z dz

d Pq(z)

Let Nr(z) and Dr(z) be the numerator and denominator of Pq(z). Since Nr(1) = Dr(1) = Nr¢(1) = Dr¢(1) 
= 0. Using L Hospital rule, we get

Lq =
2(1)r3D

(1)rD(1)rN(1)rN)1(

¢¢
¢¢¢¢¢-¢¢¢¢¢rD                                  (64)

where
Nr²(1) = 2 [(1 – A*(l)) (N p( m1 – q ) – 2 p q m1) – (1 + N + p m1 + A*(l) 

(g1 + 0r g2))]

)1(rN ¢¢¢ = 3 (h3 + h4 + h5)

Dr (1) = - 2 p m1 D1

)1(rD ¢¢¢ = - 3 p (m1 g3 + m2 D1)

gi = p l m1 mi1 (1 + ai (gi1 +  
i

i-1 )), i = 1, 2

g3 = 2 – (h1 + 2 0r g1 g2 + 0r h2) - 2(g1 + 0r g2) (A
*(l) +(1 – A*(l)) (q + m1))

- (1 – A*(l)) (2 q m1 + m2)

hi = mi1 [p l m2 + ai (p l m2 gi1 + p2 l2 2
1m gi2 + 

i

i2 )-(1mp

+ 
i

i
2
1

22 )-(1m2 p (gi1 + 
i

1
))] + p2 l2 2

1m mi2 (1 + ai (gi1 + 
i

i-1 ))2, i = 1, 2

h3 = (h1 + 0r (2 g1 g2 + h2) + 2 p m1 (g1 + 0r g2) + p m2)((1 – A*(l)) (m1 – q ) - m1)    
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                 - (g1 + 0r g2 + p m1) (m2 + 2 m1   - (1 – A*(l)) (2 q m1 + m2))

h4 =
11m

N (m2 n1 + p l 2
1m n2) (A

*(l) + (1 – A*(l)) (q + p m1) – 2) 

+ N ((1 – A*(l)) (2 q m1 + p m2 – 4 p m1) – 2)
and

h5 = p A*(l) [m1(h1+ 0r (2 g1 g2 + h2)+2m1(g1+ 0r g2) + m2)- (2 m1 + m2) (1 - (g1 + 0r g2) - m1)]

· The mean number of customers in the system is 
                                  LS = Lq + S + F                    (65)

VII. RELIABILITY INDICES

Theorem 2
The steady state availability of the server is given by 

A = 1 – [l (1 + m1 + N – (A*(l) 
           + (1 – A*(l)) (m1 + q))) (a1 m11 g11 + 0r a2 m21 g21) + (N D1 / (p m1))] / D2                               (66)
Proof

A = I0 + 
1

lim
®z

[I(z) + P(z) + Q(z) + F2,1(z) + F2,2(z)]

Substituting the expressions of I(z), P(z), Q(z), F2,1(z) and F2,2(z) we obtain the result in (66).

Theorem 3

The steady state failure frequency of the server is

F  =
2

212011111 ]r[q))](m))(A(1)((ANm[1

D

++-+-++ **

                              (67)

Proof
F  =   a1

1
lim
®z

P(z) + a2
1

lim
®z

Q(z)

Using equations (27) and (28) and by direct calculation we get equation (67).

VIII. SPECIAL CASES

Case (i)
If C(z) ® z, r0 = 1, p = 1, q = 1, q1 ® 1 (single arrival, no optional service, no balking and reneging 

and no reserved time) then the model reduces to a retrial queue with modified vacation and server breakdown. In 
this case the results coincide with the results obtained in Chen et al. (2010).
Case (ii)

If r0 = 1, p = 1, q = 1, a = 0 (no optional service, no balking and reneging and no breakdown) then the 
model becomes a batch arrival retrial queue with modified vacation. In this case the results agree with that of 
Chang and Ke (2009).

IX. NUMERICAL RESULTS

Numerical examples are presented to study the effect of the parameters on the system characteristics.  
Assume that the retrial time, ith phase service time, repair time of the server failed during ith phase service and 
vacation time are exponentially distributed with respective parameters h, mi, bi and n where i = 1, 2. The 
following arbitrary values are selected for the parameters in such a way that the stability condition holds l = 1, 
a1 = 0.4, a2 = 0.4, r0 = 0.5, r1 = 0.5, p = 0.4, q = 0.6, J = 5,        q1 = 0.6, q2 = 0.6, t1 = 0.5, t2 = 0.5, C1 = 0.5, C2

= 0.5, m1 = 5, m2 = 3, b1 = 3, b2 = 3, n = 5 and h = 3. 
Table 1 shows the dependence of the availability (A) and failure frequency (F) on the joining 

probability p, failure rate a1 and retrial rate h. It is noted that availability increases as p increases and decreases 
as h and a1 increase. Failure frequency increases with increase in p and a1 and decreases with increase in h.
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Effect of the parameters l and m1 on the performance measures I0 - the probability that the server is idle 
in empty system, I - the probability that the server is idle in non-empty system, S - the probability that the server 
is busy, F - the probability that the server is under repair, V - the probability that the server is on vacation, LS -
the mean system size are displayed in table 2. We observe that I0 and V decrease with increase in l and increase
with increase in m1. I, S, F and Ls increase for increasing values of l and decrease for increasing values of m1

Table 1 Reliability Indices for varying Values of p, a1 and h

p a1

h = 3 h = 6 h = 9

A F A F A F

0.1

0.1 0.5174 0.0474 0.4908 0.0462 0.4815 0.0458

0.3 0.5062 0.0680 0.4801 0.0663 0.4711 0.0657

0.5 0.4954 0.0879 0.4698 0.0857 0.4609 0.0849

0.7 0.4849 0.1071 0.4599 0.1044 0.4512 0.1035

0.9 0.4749 0.1257 0.4503 0.1255 0.4417 0.1214

0.3

0.1 0.5938 0.0637 0.5494 0.0624 0.5334 0.0620

0.3 0.5798 0.0918 0.5357 0.0899 0.5199 0.0893

0.5 0.5662 0.1191 0.5224 0.1167 0.5067 0.1158

0.7 0.5530 0.1456 0.5095 0.1427 0.4939 0.1416

0.9 0.5401 0.1714 0.4970 0.1679 0.4815 0.1667

0.5

0.1 0.6685 0.0797 0.6097 0.0792 0.5878 0.0790

0.3 0.6524 0.1153 0.5934 0.1145 0.5714 0.1142

0.5 0.6365 0.1501 0.5774 0.1490 0.5554 0.1486

0.7 0.6210 0.1842 0.5617 0.1829 0.5396 0.1824

0.9 0.6058 0.2175 0.5464 0.2160 0.5243 0.2154

Table 2 Performance Measures for varying Values of 1

µ1 I0 I S F V Ls

0.9

20 0.2373   0.1503    0.1733   0.0231   0.3605   2.0330    

23 0.2400      0.1503 0.1685    0.0225    0.3647    1.8158  

26 0.2422  0.1502    0.1649   0.0220   0.3680   1.6542   

29 0.2439    0.1502 0.1619    0.0216    0.3706   1.5293   

32 0.2453       0.1501   0.1596    0.0213    0.3727    1.4299    

1

20 0.2018    0.1657    0.1873    0.0250    0.3604    4.0382    

23 0.2045    0.1656    0.1822    0.0243    0.3652    3.7096    

26 0.2066    0.1655    0.1782    0.0238    0.3689    3.4663    

29 0.2082    0.1655    0.1750    0.0233    0.3719    3.2789    

32 0.2096    0.1654    0.1725    0.0230    0.3743    3.1302    

1.1

20 0.1712    0.1806    0.2013    0.0268    0.3557    6.8420    

23 0.1739    0.1805    0.1957    0.0261    0.3612    6.3451    

26 0.1759    0.1805    0.1915    0.0255    0.3654    5.9792    

29 0.1775    0.1804    0.1881    0.0251    0.3687    5.6986    

32 0.1788    0.1804    0.1853    0.0247    0.3715    5.4766    

1.2

20 0.1449    0.1952    0.2153    0.0287    0.3471   10.7680    

23 0.1475    0.1951    0.2094    0.0279    0.3532   10.0146    

26 0.1494    0.1950    0.2048    0.0273    0.3579    9.4631    

29 0.1510    0.1950    0.2012    0.0268    0.3617    9.0423    

32 0.1523    0.1949    0.1982    0.0264    0.3647    8.7107    

20 0.1222    0.2093    0.2295    0.0306    0.3350   16.2940    

23 0.1247    0.2093    0.2231    0.0298    0.3418   15.1448    
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1.3 26 0.1266    0.2092    0.2183    0.0291    0.3470   14.3096    

29 0.1281    0.2091    0.2144    0.0286    0.3512   13.6756    

32 0.1293    0.2091    0.2112    0.0282    0.3546   13.1782    
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