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Abstract-   This work aims at modelling a stabilized platform system for the ground based applications and design a 

control system to achieve stable operation of the system in presence of external disturbances. Three member gimbal-

frame structure for system model is considered in this article, lagrangian approach is adopted to find out the equations of 

motion of the stabilized platform system, as this approach presents a simple method to model complex systems. The 

external disturbances, system non-linearities and the parametric uncertainties are treated as a composite disturbance 

acting on the system. An Uncertainty and Disturbance Estimator (UDE) is used to estimate the composite disturbance. 

The estimated disturbance is used to robustify Feedback Linearization based controller designed for nominal system. The 

closed-loop stability of the system is proved. Simulation results are presented to demonstrate the efficacy of the UDE in 

estimation of the uncertainties and in meeting the objectives of the design. Lastly, the proposed design is compared with 

some well-known designs reported in the literature. 
 

Keywords – Platform Stabilization, Robust Control, Uncertainty and Disturbance Estimator (UDE). 

I. INTRODUCTION 

In many military applications such as in Search on Move, the payloads are required to be held in stable position 

throughout their operation. The stabilized platform is an object which can isolate motion of the vehicle, and can 

measure the change of the platform's motion and position as desired, so that it can make the payload which is fixed 

on the platform aim at a desired position. In the stabilized platform systems, the basic requirements are to regulate 

the payload angles even when there are changes in the system dynamics and to have a satisfactory disturbance 

rejection capability. Inertially stabilized platforms (ISP's) serve the purpose of stabilizing and pointing a broad array 

of sensors, cameras, telescopes and weapon systems. The concepts and principles of inertially stabilized platforms 

presented in literature [1] provide information on various techniques of designing stabilized platforms for a versatile 

applications. The model of Three-Axis Gyro Stabilized Platform discussed in [2] gives a basis for designing ground 

based stabilization systems to stabilize the motion of the system in three degrees of freedom. On the similar lines the 

modelling for satellite dish antenna stabilized platforms [3] is discussed where Eulerian approach of modelling is 

adopted. Owing to the ease of approach that Lagrangian method offers in modelling the complex systems, the 

modelling of Double-Gimbal Control-Moment Gyro is discussed in [4]. 

Most of the industrial control systems employ PID control. The PID controller has several important functions: it 

provides feedback; it has the ability to eliminate steady state errors through integral action; it can anticipate the 

future though derivative action and thus PID controllers are sufficient for many control problems [5]. Feedback 

Linearization (FL) is a non-linear control design technique which has attracted research interest in recent years [6]. 

FL provides satisfactory control of systems under ideal conditions, but in real time scenario in presence of 

disturbances FL control may not give desired performance. Thus to compensate for disturbances acting on the 

mailto:Email-%20%20%20anuradhamit@gmail.com
mailto:Email-%20%20%20anuradhamit@gmail.com


International Journal of Latest Trends in Engineering and Technology (IJLTET) 

Vol. 3 Issue 3 January 2014 290 ISSN: 2278-621X 

system many techniques such as Time Delay Control (TDC), Uncertainty and Disturbance Estimator (UDE) 

approach have appeared in literature. The performance of Input-Output Linearization (IOL) controller has been 

robustified using TDC approach as discussed by [7]. Techniques like Unknown Input Observer (UIO) [9], 

Disturbance Observer (DO) [10] are active area of research, to estimate the effects of uncertainties and disturbances 

acting on the system, following the line of TDC and addressing issues associated with it, a novel Uncertainty and 

Disturbance Estimation (UDE) technique is proposed in [8]. An application of the UDE in robustifying a feedback 

linearizing control law for a robot having joint flexibility is presented in [11] wherein the effect of joint flexibility is 

treated as a disturbance. In [12], the UDE based robust control designs for uncertain non-linear systems with state 

delays are presented and the authors have shown that, UDE based designs over excellent tracking and disturbance 

rejection performance. Application of the UDE technique for robustification of the IOL controller is presented in 

[14], an application of the UDE in robustification of the Input-Output Linearization (IOL) controller is presented 

wherein the UDE estimated uncertainties are used in robustifying an IOL controller. 

 

In this work, an UDE based robust controller for regulation of 3-axis gimbal platform is proposed. FL controller is 

designed by considering system non-linearities, external disturbances as a composite quantity. The FL controller is 

robustified by augmenting it with UDE estimated uncertainty. The paper is organized as follows. In Sec. II, 

mathematical modelling of the gimbal system is discussed and equations of Motion governing the motion of the 

stabilized platform are presented, Feedback Linearization based controller design for the present problem is also 

discussed. In Sec. III, the UDE based controller design for the platform stabilization is discussed whereas closed 

loop stability of the overall system is presented in Sec. IV. Simulation results demonstrating the effectiveness of the 

proposed design in presence of external disturbances and parametric uncertainties are given in Sec. V. The results of 

a comparative study of the proposed design with some of the available designs in literature are presented in Sec. VI, 

and finally Sec. VII concludes the work. 

II. PROBLEM FORMULATION 

A.  Mathematical Model of the System 

The platform stabilization system is a gimbal supported platform as shown in the Fig. 1, it consists of a structure 

with four nested bodies namely the case, outer gimbal frame, inner gimbal frame and finally the innermost platform. 

Each body is connected to the subsequent nested frame and free to rotate with one degree of freedom. The case is 

fixed to the vehicle on which this system is mounted. Case is also connected to the outer gimbal through actuators 

on either side of the joint and thus the outer gimbal is free to rotate with respect to the case along x-axis. The outer 

gimbal is connected to the inner gimbal again though actuators and is free to rotate about z-axis. And finally the 

platform is connected to the inner gimbal by the two ends of the joint through actuators. With external disturbance 

acting on the gimbal, frame angle deviate from desired accordingly in their respective degrees of freedom. 

 
Figure 1.  Platform Stabilization System Structure 
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While developing the mathematical model of the platform stabilization system, certain assumptions are made to 

simplify the mathematical modelling as below 

 All members in the arrangement are rigid. 

 The body axes are chosen such that, they are the principal axes at the center of mass of each member. Thus, 

moment of inertia matrix for each member is a diagonal matrix. 

 The effect of gravity not being significant the rate change of potential energy of the system is negligible.  

B. System Kinematics  

The system under study is as described in Fig.1, with the three gimbal members orthogonal to each other. The 

relative orientations of the members of the platform stabilization system are represented by the Euler angles and 

their respective relative angular rates as defined in [2]. 

 θ - Relative angle between the inner gimbal and the platform, measured about the platform Y axis (Yp) 

 ψ - Relative angle between the outer gimbal and the inner gimbal, measured about the inner gimbal Z axis (Zi) 

 ϕ - Relative angle between the case and the outer gimbal, measured about the outer gimbal X axis (Xo) 

The angular rate of the case is taken as, 

                                                                         𝜔𝑣 = [𝑝 𝑞 𝑟]𝑇      (1) 

The angular rates of the outer frame ωo, inner frame ωI and subsequently of the platform ωp are obtained as, 

                                                  𝜔𝑜 = [𝑝 + 𝜙̇ 𝑞𝑐𝑜𝑠𝜙 + 𝑟𝑠𝑖𝑛𝜙 −𝑞𝑠𝑖𝑛𝜙 + 𝑟𝑐𝑜𝑠𝜙]𝑇    (2) 

                                                   𝜔𝐼 = [

(𝑝 + 𝜙̇)𝑐𝑜𝑠𝜓 + (𝑞𝑐𝑜𝑠𝜙 + 𝑟𝑠𝑖𝑛𝜙)𝑠𝑖𝑛𝜓

−(𝑝 + 𝜙̇)𝑠𝑖𝑛𝜓 + (𝑞𝑐𝑜𝑠𝜙 + 𝑟𝑠𝑖𝑛𝜙)𝑐𝑜𝑠𝜓

−𝑞𝑠𝑖𝑛𝜙 + 𝑟𝑐𝑜𝑠𝜙 + 𝜓̇

]    (3) 

 

              𝜔𝑝 = [

[(𝑝 + 𝜙̇)𝑐𝑜𝑠𝜓 + (𝑞𝑐𝑜𝑠𝜙 + 𝑟𝑠𝑖𝑛𝜙)𝑠𝑖𝑛𝜓]𝑐𝑜𝑠𝜃 − [−𝑞𝑠𝑖𝑛𝜙 + 𝑟𝑐𝑜𝑠𝜙 + 𝜓̇]𝑠𝑖𝑛𝜃

−(𝑝 + 𝜙̇)𝑠𝑖𝑛𝜓 + (𝑞𝑐𝑜𝑠𝜙 + 𝑟𝑠𝑖𝑛𝜙)𝑐𝑜𝑠𝜓 + 𝜃̇

[(𝑝 + 𝜙̇)𝑐𝑜𝑠𝜓 + (𝑞𝑐𝑜𝑠𝜙 + 𝑟𝑠𝑖𝑛𝜙)𝑠𝑖𝑛𝜓]𝑠𝑖𝑛𝜃 + [−𝑞𝑠𝑖𝑛𝜙 + 𝑟𝑐𝑜𝑠𝜙 + 𝜓̇]𝑐𝑜𝑠𝜃

]  (4) 

C. System Dynamics  

The equations of motion governing the motion of the gimbals system are developed using the Euler-Lagrangian 

approach. To describe the dynamics of the gimbal system the generalized coordinates are chosen as the roll , pitch 

and yaw angles (ϕ, ψ ,θ). The Lagrange's Equation for non-conservative systems given by (5) is applied for each 

generalized coordinate ϕ, ψ and θ as 

                                                                              
𝑑

𝑑𝑡
(
𝜕𝐾𝐺

𝑞̇̇𝑖
) − (

𝜕𝐾𝐺

𝑞𝑖
) = 𝑄𝑖         (5) 

Where, KG is the total kinetic energy of the system. Qi is the Generalized force arising due to non-conservative 

forces. The differential equations in [2] representing model of gimbal platform are simultaneous equations in terms 

of the angular accelerations. After algebraic simplifications mathematical model describing the motion of the 

gimbals system is obtained as, 

                     𝜙̈ =
𝐵

𝑏2
− [

𝑏3

𝑏2
(

𝑏2(𝐶𝑎1−𝐴𝑐1−𝐵(𝑎1𝑐2−𝑐1𝑎2))

𝑏2
2𝑎1−𝑏3(𝑎1𝑐2−𝑐1𝑎2)

)];  𝜓̈ = (
𝑏2(𝐶𝑎1−𝐴𝑐1−𝐵(𝑎1𝑐2−𝑐1𝑎2))

𝑏2
2𝑎1−𝑏3(𝑎1𝑐2−𝑐1𝑎2)

);       

     𝜃̈ =
𝐴

𝑎1
−

𝑎2

𝑎1
[
𝐵

𝑏2
−

𝑏3

𝑏2
(
𝑏2(𝐶𝑎1−𝐴𝑐1−𝐵(𝑎1𝑐2−𝑐1𝑎2))

𝑏2
2𝑎1−𝑏3(𝑎1𝑐2−𝑐1𝑎2)

)]   (6) 

where 

a1 = IPy 
a2 = -IPy sin(ψ);    A = Qθ  - QPy;    b2 = (IPz-IPx) cos(ψ) cos(θ) sin(θ);   
b3 = IIz + IPx sin2(θ) + Ipz cos2(θ); B = Qψ - QIz; c1= -IPy sin(ψ);  C= Qϕ-Qox 
c2= Iox+ IPx cos2(ψ) cos2(θ) +IPy sin2(ψ) + Ipz cos2(ψ) sin2(θ)+ IIx cos2(ψ)+ IIy sin2(ψ) 
  
Here Qϕ, Qψ , Qθ are the generalized forces that are external to the system or not derivable from a scalar 
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potential function and defined as, 

𝑄𝜙 = −𝐷𝜙𝜙̇ + 𝑇𝜙 ,    𝑄𝜓 = −𝐷𝜓𝜙𝜓̇ + 𝑇𝜓,       𝑄𝜃 = −𝐷𝜃𝜃̇ + 𝑇𝜃  

Dϕ, Dψ , Dθ are the coefficients of viscous friction between the adjacent gimbals system members and Tϕ, Tψ , Tθ are 

the torques inputs acting on the outer gimbal, inner gimbal and platform respectively. Here, k1- k9 can be found out 

by simple algebraic manipulation. Further simplifying (6) 

                     [

𝜙̈

𝜓̈

𝜃̈

] = [

𝑘1(𝑄𝜓 − 𝑄𝐼𝑧) + 𝑘2(𝑄𝜃 − 𝑄𝑃𝑦) − 𝑘3(𝑄𝜙 − 𝑄𝑜𝑥)

𝑘4(𝑄𝜙 − 𝑄𝑜𝑥) − 𝑘5(𝑄𝜃 − 𝑄𝑃𝑦) − 𝑘6(𝑄𝜓 − 𝑄𝐼𝑧)

𝑘7(𝑄𝜃 − 𝑄𝑃𝑦) − 𝑘8(𝑄𝜓 − 𝑄𝐼𝑧) − 𝑘9(𝑄𝜙 − 𝑄𝑜𝑥)

] + [

−𝑘3 𝑘1 𝑘2

𝑘4 −𝑘6 −𝑘5

−𝑘9 −𝑘8 𝑘7

] [

𝑇𝜙

𝑇𝜓

𝑇𝜃

] (7) 

Now defining state variables as, 

    𝑋 = [𝑥1 𝑥2 𝑥3]𝑇 = [𝜙 𝜓 𝜃]𝑇    (8) 

Writing (7) in terms of newly defined variables, 

                                                                        𝑋̈ = 𝑀(𝑋, 𝑋̇) + 𝑔𝑇      (9) 

where 

 𝑀(𝑋, 𝑋̇) = [

𝑘1(𝑄𝜓 − 𝑄𝐼𝑧) + 𝑘2(𝑄𝜃 − 𝑄𝑃𝑦) − 𝑘3(𝑄𝜙 − 𝑄𝑜𝑥)

𝑘4(𝑄𝜙 − 𝑄𝑜𝑥) − 𝑘5(𝑄𝜃 − 𝑄𝑃𝑦) − 𝑘6(𝑄𝜓 − 𝑄𝐼𝑧)

𝑘7(𝑄𝜃 − 𝑄𝑃𝑦) − 𝑘8(𝑄𝜓 − 𝑄𝐼𝑧) − 𝑘9(𝑄𝜙 − 𝑄𝑜𝑥)

] ; 𝑔 = [

−𝑘3 𝑘1 𝑘2

𝑘4 −𝑘6 −𝑘5

−𝑘9 −𝑘8 𝑘7

] ; 𝑇 = [𝑇𝑥1
𝑇𝑥2

𝑇𝑥3]
𝑇 (10) 

where, 

Q11  =  (Qx2  −  QIz);   Q12 =  (𝑄x3  −  Qpy);    Q13 =  (Qx1  −  Qox)  

The output vector to be controlled is selected as 

                                                                  𝑦 = [𝑦1 𝑦2 𝑦3]𝑇 = [𝜙 𝜓 𝜃]𝑇     (11) 

The control objective is to design a robust controller using roll, pitch, and yaw angle feedback and their derivatives 

such that the gimbal platform remains stable as per the specifications imposed. 

D. Feedback Linearization based Control  

The Feedback Linearization (FL) [6] is one of the widely used approach in non-linear control systems design. 

Advantage of FL design is that it provides a systematic framework for designing controllers for non-linear systems. 

In this work, the FL approach is employed for designing controller stabilizing gimbal axes. Consider the dynamics 

given by (9)-(11), the matrix g of the gimbal system is non-singular in whole state-space. For the system of (9), non-

linear coordinate transformation is not required and the control which achieves feedback linearization with the 

angular positions ϕ, ψ and θ as outputs can be obtained as [6] 

                                                                         𝑇 = 𝑔−1(−𝑀(𝑋, 𝑋̇) + 𝜗)     (12) 

where 𝜗 = [𝜗𝑥1
𝜗𝑥2

𝜗𝑥3] is the outer loop control. Substituting the FL control (15) in (12) results into a linear and 

decoupled input-output relationship as 

                                                                                          𝑋̈ = 𝜗               (13) 

Now defining the outer-loop control, 𝜗𝑖, as  

                                                                   𝜗𝑖 = −𝑘𝑖2𝑥̇𝑖 − 𝑘𝑖1𝑥𝑖;  𝑖 =  1;  2;  3     (14) 

The controller gains, 𝑘𝑖𝑗, are the design parameters to be chosen to achieve desired regulation. FL control requires 

exact cancellation of the non-linearities, it offers asymptotic regulation only when the models are known exactly and 

the fed back states are measured without any error. In practice, these conditions are hard to meet and so the 

performance of FL control degrades. Since modelling uncertainties and external disturbances are always present, 

there is a need to robustify the FL based controller. As robustness is an important concern with the FL control, 

application of the UDE technique for robustification of the FL controller is presented in next section. 
 

III. UDE BASED CONTROLLER 
 

In this work, the UDE technique of [8] is used for designing a robust controller for gimbal stabilization. Reader is 

referred to [8] for a detailed development of UDE technique. 
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A. FL+UDE Controller 

Consider the dynamics given by (9), since in practice system model is known precisely, it becomes necessary to 

compensate effects of modelling errors and inaccuracies. To this end, matrix, 𝑔 is taken as 𝑔 =  𝑔0  +  ∆𝑔 where 𝑔𝑜 

is a chosen constant diagonal matrix and ∆𝑔 is its associated uncertainty. In view of this, the dynamics of (12) is 

rewritten as 

                                                         𝑋̈ = [𝑀(𝑋, 𝑋̇) + (𝑔 − 𝑔𝑜)𝑇] + 𝑔𝑜𝑇 + 𝑑′    (15) 

where d' represents the effect of external disturbances, if any. Now denoting the total uncertainty as 𝑑 = 𝑀(𝑋, 𝑋̇) +
(𝑔 − 𝑔𝑜)𝑇 + 𝑑′ , the dynamics of (15) takes the form 

                                                                                 𝑋̈ = 𝑑 + 𝑔𝑜𝑇      (16) 

where 𝑑 = [𝑑1 𝑑2 𝑑3]
𝑇 = [𝑑𝜙 𝑑𝜓 𝑑𝜃]𝑇. With 𝑔

0
 diagonal, it is straightforward to verify that the dynamics of 

(16) is decoupled. In view of this, the dynamics for ith axis can be written as 

                                                                             𝑥̈𝑖 = 𝑑𝑖 + 𝑏𝑖𝑖𝑇𝑖       (17) 

where 𝑏𝑖𝑖  are the diagonal elements of 𝑔𝑜. To address the issue of the uncertainty, the FL control takes the form as 

                                                                         𝑇𝑖 =
1

𝑏𝑖𝑖
(−𝑑̂𝑖 + 𝜗𝑖)      (18) 

where 𝑑̂𝑖 is estimate of effect of uncertainties i.e. 𝑑𝑖. We designate the controller of (18) as FL+UDE controller. 

Substituting (18) in (17) leads to 

                   𝑥̈𝑖 = 𝜗𝑖 +  𝑑𝑖 − 𝑑̂𝑖       (19) 

from where one gets 

                                                                        𝑑𝑖 = 𝑥̈𝑖 − 𝜗𝑖 + 𝑑̂𝑖       (20) 

Now, as proven in [8] and [13], uncertainty can be estimated by passing the function of (20) through a filter 

𝐺𝑖𝑓(𝑠) of adequate bandwidth, specifically, if the filter 𝐺𝑖𝑓(𝑠)  is of the form of 

                                                                𝐺𝑖𝑓(𝑠) =
1

1+𝜏𝑖𝑓𝑠
; i =  1;  2;  3      (21) 

here, 𝐺𝑖𝑓(𝑠) is a first order low pass filter with a time constant of 𝜏𝑖𝑓. Then the estimate of uncertainty 𝑑𝑖 denoted as 

𝑑̂𝑖 can be obtained by solving 

                                                                    𝜏𝑖𝑓 𝑑̇̂𝑖(𝑡) + 𝑑̂𝑖(𝑡) = 𝑑𝑖(𝑡)      (22) 

Now from (20) and (22) 

                                                                𝜏𝑖𝑓 𝑑̇̂𝑖(𝑡) + 𝑑̂𝑖(𝑡) = 𝑥̈𝑖 − 𝜗𝑖 + 𝑑̂𝑖 

Now, solving above relation, we get 

        𝜏𝑖𝑓 𝑑̇̂𝑖(𝑡) = 𝑥̈𝑖 − 𝜗𝑖      (23) 

Integrating both sides of (23) 

                                                                  𝑑̂𝑖(𝑡) =
1

𝜏𝑖𝑓
𝑥̇𝑖(𝑡) −

1

𝜏𝑖𝑓
∫𝜗𝑖 𝑑𝑡      (24) 

Substituting (24) into (18) gives the FL+UDE control law as 

                                                          𝑇𝑖 =
1

𝑏𝑖𝑖
[−

1

𝜏𝑖𝑓
𝑥̇𝑖(𝑡) + 𝜗𝑖 +

1

𝜏𝑖𝑓
∫𝜗𝑖 𝑑𝑡]     (25) 

The robustified FL control (25) has been designated as the FL+UDE controller. From (25), while the controller 

achieves the objective of robustification of the FL control, the implementation of the same requires measurement of 

angular positions as well as velocities. 

IV. CLOSED LOOP STABILITY 
 

From plant in (16), the dynamics are decoupled and hence stability for roll-axis (or for any ith axis) is established. 

To this end, defining 𝑥𝑖1 = 𝜙 and 𝑥𝑖2 = 𝜙̇, the dynamics of (16) can be rewritten in a phase variable form as 

𝑥̇𝑖1 = 𝑥𝑖2              
𝑥̇𝑖2 = 𝑏𝑖𝑖𝑇𝑖 + 𝑑𝑖 

                                                                                   𝑦 = 𝑥𝑖1         (26) 

Defining the state vector as 𝑥𝑖𝑝 = [𝑥𝑖1 𝑥𝑖2]𝑇 = [𝜙 𝜙̇], the system of (26) can be written as 
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                                                                     𝑥̇𝑖𝑝 = 𝐴𝑖𝑝𝑥𝑖𝑝 + 𝐵𝑖𝑝𝑇𝑖 + 𝐵𝑖𝑑𝑑𝑖      (27) 

where 

𝐴𝑖𝑝 = [
0 1
0 0

] ;  𝐵𝑖𝑝 = [
0
𝑏𝑖𝑖

] ;   𝐵𝑖𝑑 = [
0
1
] ;  𝐶𝑖𝑝 = [1 0] 

The FL+UDE control (18) using 𝜗𝑖 of (14) can be written as 

                                                                   𝑇𝑖 =
1

𝑏𝑖𝑖
(−𝑘𝑖2𝑥̇𝑖 − 𝑘𝑖1𝑥𝑖 − 𝑑̂𝑖)     (28) 

Now substituting control (28) into (27) and defining the state feedback gain vector, 𝐾𝑖𝑝 as 𝐾𝑖𝑝 = [
𝑘𝑖1

𝑏𝑖𝑖

𝑘𝑖2

𝑏𝑖𝑖
], one can 

work out the following error dynamics 

           𝑥̇𝑖𝑝 = (𝐴𝑖𝑝 − 𝐵𝑖𝑝𝐾𝑖𝑝)𝑥𝑖𝑝 + 𝐵𝑖𝑑𝑑̃𝑖     (29) 

Lastly, the uncertainty estimation error dynamics is obtained. From (23) and (25), the estimate of the uncertainty, 𝑑𝑖, 

is given as 

           𝑑̂𝑖 = 𝐺𝑖𝑓(𝑠)𝑑𝑖      (30) 

From (30) one gets 

                                                                                 𝑑𝑖 =
𝑑̂𝑖

𝐺𝑖𝑓(𝑠)
       (31) 

With the uncertainty estimation error defined as 𝑑̃𝑖 = 𝑑𝑖 − 𝑑̂𝑖 and using (24) and carrying some simplifications gives 

                                                                            𝑑̇̃𝑖 = −
1

𝜏𝑖𝑓
𝑑̃𝑖 + 𝑑̇𝑖      (32) 

Combining (29), and (32) yields the following error dynamics for the closed loop system 

                                                        [
𝑥̇𝑖𝑝

𝑑̇̃
] = [

(𝐴𝑖𝑝 − 𝐵𝑖𝑝𝐾𝑖𝑝) −𝐵𝑖𝑑

0 −
1

𝜏𝑖𝑓

] [
𝑥𝑖𝑝

𝑑̃𝑖
] + [

0
1
] 𝑑̇𝑖    (33) 

From (33), the system matrix being in a block triangular form, now as proved in [14], it can be easily verified that 

the eigenvalues of the system matrix are given by 

                                                           |𝑠𝐼 − (𝐴𝑖𝑝 − 𝐵𝑖𝑝𝐾𝑖𝑝)| |𝑠 − (−
1

𝜏𝑖𝑓
)| = 0     (34) 

Since pair (𝐴𝑖𝑝, 𝐵𝑖𝑝) is controllable, the controller gain, 𝐾𝑖𝑝 can be chosen appropriately along with 𝜏𝑖𝑓 > 0 to 

ensure stability for the error dynamics. As the error dynamics is driven by 𝑑̇𝑖, it is obvious that for bounded |𝑑̇𝑖|, 
bounded input-bounded output stability is assured. Additionally, if the rate of change of uncertainty is negligible, 

i.e., if 𝑑̇𝑖 ≈ 0, then the error dynamics is asymptotically stable [14]. From (32) one can observe that smaller the 

value of filter time constant, 𝜏𝑖𝑓, smaller will be the estimation error. It can also be noted that estimation does not 

depend on the magnitude of the uncertainty but does depend on its rate of change. As stated earlier, the error 

dynamics (33) is asymptotically stable if 𝑑̇𝑖 = 0.  
 

V. SIMULATIONS AND RESULTS 
 

The system model parameters and the control specifications for simulation are defined below, the time constant 

𝜏𝑖𝑓 of low-pass filter of (21) is taken as 𝜏𝑖𝑓 = 0.005 𝑠𝑒𝑐. The various parameters of the system model are taken as 

follows: 

The coefficients of viscous friction are assumed to be 3.454 N.m for all three axes. Initial angular position mismatch 

in roll, yaw and pitch are taken to be 3o respectively. Control specifications for design are taken as, 𝑡𝑠 =
0.4 𝑠𝑒𝑐,   𝜁 = 0.8 and 𝑒𝑠𝑠 = 0.05𝑜. Uncertainty of 10% is considered in all elements of inertia matrix of (35) and in 

coefficient of viscous friction, external torque disturbances of magnitude of 𝑑𝜙 = 12250 sin(2𝜋𝑡)  𝑁.𝑚, 𝑑𝜓 =

11060 sin(2𝜋𝑡)  𝑁.𝑚, and 𝑑𝜃 = 10080 sin(2𝜋𝑡)  𝑁.𝑚 are considered to be acting on the system. Corresponding 

angular acceleration disturbances are obtained by dividing torque by inertia in roll, yaw and pitch axes respectively. 

The inertia values in roll, yaw and pitch axes are [6124.1 5530.2 5040.2]𝑘𝑔.𝑚2 respectively. The Inertia 

matrix I obtained from corresponding Solid-Works® modelling is, 
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                                      𝐼 = [

𝐼𝑜𝑥 𝐼𝑜𝑦 𝐼𝑜𝑧

𝐼𝑃𝑥 𝐼𝑃𝑦 𝐼𝑃𝑦

𝐼𝐼𝑥 𝐼𝐼𝑦 𝐼𝐼𝑧

] = [
1244.372 865.858 1484.444
1037.950 673.160 1931.123
1115.625 725.507 1428.554

] 𝑘𝑔.𝑚2   (35) 

The constant diagonal matrix 𝑔𝑜 is chosen as 

𝑔𝑜 =

[
 
 
 
 
−1

𝐼𝑜𝑥
⁄ 0 0

0 −1
𝐼𝐼𝑧

⁄ 0

0 0 −1
𝐼𝑃𝑦

⁄ ]
 
 
 
 

 

Simulations are carried out, from Figs. 2(a)-(c), the roll yaw and pitch angles are plotted and it can be seen that the 

UDE based controller offered a satisfactory regulation performance. It is important to note that function 𝑀(𝑋, 𝑋̇) i.e. 

dynamics of the system is considered unknown, additionally external torque disturbance is also acting on the system. 

Figs. 2(d)-(f) shows actual and estimated disturbance, UDE is capable of estimating disturbance accurately. Figs. 

2(g)-(i) gives the control torques of roll, yaw and pitch axes respectively. 
 

VI. COMPARISON WITH EXISTING DESIGNS 
 

Simulations are carried out to compare the performance of the proposed design with some well-known existing 

controllers. The controllers considered for comparison purpose are (a) PD control (b) FL control and (c) the 

proposed UDE based controller. A brief of the controllers is given for the sake of completeness as follows: 
 

Design-1: PD control Design 

The PD control is widely used control technique [5] and is used as Design-1 in this comparison. The control law for 

the PID control can written as,  

                                                                 𝑇𝑖 = −𝑘𝑖𝑑𝑥̇𝑖 − 𝑘𝑖𝑝𝑥𝑖;  𝑖 =  1;  2;  3    (36) 

Now that the system under consideration is nonlinear, for control design purpose system is first linearized using 

Jacobian linearization [6] to find controller gains. Controller gains are chosen to satisfy performance specifications 

as given in Sec. 5. Subsequently these gains are used to control the nonlinear dynamics of the stabilization system.  
 

Design-2: Feedback Linearization (FL) Control 

Feedback Linearization based control as presented in [6] is used as Design-2 in this comparison. The controller takes 

the form of (37). The controller gains for the design of the FL controller are same as that used in Sec. 5. 

     𝑇 = 𝑔−1(−𝑀(𝑋, 𝑋̇) + 𝜗)      (37) 
 

Design-3: FL+UDE Control 

The proposed UDE based design is designated as Design-3 for the purpose of comparison. Simulation parameters 

and other design parameters are same as given in Sec. 5.  

To compare the performance, simulations are carried out by considering the data given in Sec. 5 for all designs. A 

disturbance torque as discussed in Sec. 5 is also considered. From Fig. 3 (a)-(c), it can be observed that while the 

Designs-1 and 2 have resulted steady state error in position regulation, the FL+UDE controller has offered better 

regulation. One important point to be considered that, while for design-2, M and 𝑔 are considered known whereas 

for Design-3, M is considered as unknown and only nominal value of 𝑔 i.e. 𝑔𝑜 is used for controller design. Fig-

3(d)-(e) gives control torque history of various designs. Peak steady-state errors of various designs have been shown 

in Table-1, from where one can observe that UDE based controller minimizes 𝑒𝑠𝑠 compared to other two designs. 
 

Table -1 Peak ess of Various Designs 
 

Design 𝒆𝝓 (deg) 𝒆𝝍 (deg) 𝒆𝜽 (deg) 

Design-1 unstable unstable unstable 

Design-2 0.3085 0.2963 0.2563 

Design-3 0.0069 0.0070 0.0075 
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  (a)       (b)            (c) 

  
   (d)          (e)                   (f) 

 
    (g)           (h)                   (i) 

Figure 2.  Performance of UDE based controller in presence of disturbances 

VII. CONCLUSION 
 

In this paper, a new approach based on the UDE technique is proposed for designing a robust controller for 

stabilization of three-axis gimbal platform. The FL controller is robustified with UDE estimated uncertainties. In 

doing so, system nonlinearities, external disturbances and modeling inaccuracies have been considered as to be 

estimated uncertainty. Hardware realization of the stabilization system is in progress, proposed control strategy will 

be tested on hardware platform and forms future task. 
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    (a)           (b)                (c) 

  
    (d)           (e)                    (f) 

          Performance Comparison of UDE based Controller with various Designs 
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