
Test Case Prioritization in Regression Testing
using Various Metrics

Seema Sharma
M.Tech. Scholar, Dept. of CSE

SGI, Gurgaon.

Dr. Preeti Gera
Associate Professor, Dept. of CSE

SGI, Gurgaon, India.

Abstract—Regression testing is one of the most critical activitiesof software development and maintenance.
Whenever software ismodified, a set of test cases are run and the comparison of newoutputs is done with the older
one to avoid unwanted changes. Ifthe new output and old output match it implies that themodifications made in one
part of the software don’t affect theremaining software. Test case prioritization techniques involve scheduling over
test cases in an order that improves the performance of regression testing. It is inefficient to re execute every test
cases for every program function if once change occurs. The problem of regression testcase selection can be solved by
prioritizing the test cases.Regression test prioritization techniques reorder the execution ofa test suit in an attempt to
ensure that faults are revealed at theearlier stage of the testing process. Test case prioritizationtechniques schedule
test cases for execution so that those withhigher priority, according to some criterion are executed earlierthan those
with lower priority to meet some performance goal. Inthis paper an algorithm is proposed to prioritize test cases
basedon rate of fault detection and impact of fault. The proposedalgorithm identifies the severe fault at earlier stage
of the testing process and the effectiveness of prioritized test case andcomparison of it with unprioritized ones with
the help of APFD is done here in this paper.

I. INTRODUCTION

Software developers often save the test suites, so that they can reuse them, when software undergoes changes.
Running all test cases in an existing test suite can consume enormous amount of time. For example a product
that contains approximately 20,000 lines of code running an entire test suits requires seven weeks. Researchers
have found various algorithms to reduce the cost of regression testing and also to increase the effectiveness of
testing [ZHE2007] Dennis Jeffrey and Neelam Gupta [DEN2007] have tested experimentally by selectively
retaining test cases during test suite reduction. In [JEN2004], they have empirically evaluated several test case
filtering techniques that are based on exercising information flows. The other way of testing is to order the test
case based on some criteria to meet some performance goal. Testers may want to order their test cases so that
those test cases with the highest priority according to some criterion are run first. So test case prioritization
technique do not discard test cases, they can avoid the drawback of test case minimization techniques. The
software is successful when Quality of software is maximized, cost should be minimized and the product should
be delivered to the customer in time [JKA1997], [MAR2006], [ALE2002]. In [SEB2002], Sebastian Elbaum et.
Al. investigated several prioritization techniques such as total statement coverage prioritization and additional
statement coverage, to improve the rate of fault detection. There are varieties of testing criteria that have been
discussed and the different testing criteria are useful for identifying test cases that exercise different structural
and functional elements in a program. And therefore the use of multiple testing criteria can be effective at
identifying test cases that are likely to expose different faults in a program. In this paper, one new approach to
prioritize the test cases at system level for regression test cases is proposed. This technique identifies more
severe faults at an earlier stage of the testing process. Factors proposed to design algorithm are 1) Rate of faults
detection (how quickly the faults are identified 2) Impact of Fault. We can analyze the test cases by feeding
faults, invariant of the severity into any program.

The APFD metric relies on two assumptions: (1) all faults have equal costs (hereafter referred to as fault
severities), and (2) all test cases have equal costs (hereafter referred to as test costs). Earlier empirical results
suggest that when these assumptions hold, the metric operates well. In practice, however, there are cases in
which these assumptions do not hold: cases in which faults vary in severity and test cases vary in cost. In such
cases, the APFD metric can provide unsatisfactory results.

International Journal of Latest Trends in Engineering and Technology (IJLTET)

Vol. 4 Issue 2 July 2014 166 ISSN: 2278-621X

II. EARLIER WORK

This section describes the code coverage based TCP Strategies and their benefits. Coverage based TCP done
their prioritization based on their coverage of statements [1]. For prioritizing statement coverage the test cases
are ordered based on the number of statements executed or covered by the test case such that the test cases
covering maximum number of statements would be executed first. Some of the other techniques are branch
coverage and function coverage. In this method test cases are prioritized based on their number of branch or
function coverage by test case respectively. The benefits of the code coverage strategies were measured using
weighted average of the percentage of branch covered (APBC), percentage of decision covered (APDC) and
percentage of statement covered (APSC) .APBC is the rate of coverage of blocks during testing process, APDC
is a measure of rate of coverage of decisions for a test suite and the APSC is a measure of rate of coverage of
statements during test suite. The disadvantage of the above method is that no importance for fault. My aim is to
give equal weightage of rate of fault detection and also identification of severe faults at the earlier stages of the
testing process. Several case studies demonstrate the benefits of code coverage based TCP strategies.
Researchers have used various prioritization techniques to measure APFD values and found statistically
significant results. The APFD value is a measure that shows how quickly the faults are identified for a given test
suite set. The APFD values range from 0 to 100 and the area under the curve by plotting percentage of fault
detected against percentage of test cases executed. The code coverage-based TCP strategies were shown to
improve the rate of fault detection, allowing the testing team to start debugging activities earlier in the software
process and resulting in faster software release to the customer. If all the faults are not equally severe, then
APFD leads misleading information. The impact of fault value also has to be considered to prioritize the test
cases.

III. MAIN RESULTS

This section discusses the proposed set of prioritization factors and the prioritization algorithm.
Factors to be considered for prioritization

(1) Rate of fault detection:
The average number of faults detected perminute by a test case is called rate of fault detection. The rate of fault
detection of test case i have been calculated using the number of faults detected and the time taken to find out
those faults for each test case of test suite.

RFi = ((number of faults) / time) * 10 (1)

Every factor is converted into 1 to 10 point scale. The reason being, earlier work may take long time (may be
several months or a year) depending on the size of the test suite and how long each test case takes to run. The
technique implements a new test case prioritization technique that prioritize the test cases with the goal of giving
importance of test case which have higher value for rate of fault detection and severity value.

(2) Impact of fault:

Testing efficiency can be improved by focusing on the test case that is likely to cover high number of severe
faults. So, for each fault severity value was assigned based on impact of the fault on the product. Severity value
has been assigned based on a 10 point scale as shown below:

• Complex (Severity 1): SM value of 9-10

• Moderate (Severity 2): SM of 6

• Low (Severity 3):SM of 4

• Very Low (Severity 4): SM of 2

International Journal of Latest Trends in Engineering and Technology (IJLTET)

Vol. 4 Issue 2 July 2014 167 ISSN: 2278-621X

Once the fault has been detected then we assign some severity measure to each fault according to the type of the
fault. For example we can assign the severities to the faults in decreasing order of the severity as follows.

Timing/ serialization � 10

Function � 9

Unknown �8

Assignment � 7

Environment � 6

Interface � 5

Algorithm� 4

Data� 3

Checking � 2

GUI �1

 Total Severity of Faults Detected (TSFD)in the module is the summation of severity measures of all faults ts
identified for a module.

 i = n

TSFD = � SM (severity measure) (2)

i = 1

This equation shows TSFD for a module n where n represents total number of faults identified forthe the
module.

 Assign Severity Value

Fault detected
for some test
case

1

2

3

4

5

6

7

8

9

10

T1 x x

T2 x x

T3 x x

T4 x X x

T5 x x

T6 x x x

T7 x

T8 x x x x

T9 X x

T10
x x

International Journal of Latest Trends in Engineering and Technology (IJLTET)

Vol. 4 Issue 2 July 2014 168 ISSN: 2278-621X

According to the equation 2 the severity value of ea each test case can be calculated as follows:

T1 = 6

T2 = 6

T3 = 6

T4 = 10

T5 = 8

T6 = 10

T7 = 4

T8 = 20

T9 = 12

T10 = 6

Equation (3) shows that the severity value of test case i, where t represent number of faults identified by the ith
test case.
 t
St = � SV (3)
 j=1

If Maximum(S) is the high severity value of test case among all the test cases then fault impact of ith test case is
shown below:

FIi = (Si/ Maximum(S)) * 10 (4)

(3) Customer Assigned priority (CP):

It is a measure of the importance of customer requirement. So, the requirement with highest customer
importance should be tested early to improve customer satisfaction. The customer assigns the values
for each requirement ranging from 1 to 10 where 10 denote highest customer priority.

(4) Test Case Weightage

Test case weight of ith test case is computed as follows.

TCWi = RFTi *FIi +CP (5)

Test cases are sorted for execution based on the descending order of TCW, such that test case with highest TCW
runs first.

PRIORITIZATION ALGORITHM

The proposed Prioritization technique is presented in an algorithmic form here under: The input of the algorithm
is test suite T, test case weightage of each test case is computed using the equation (4) and the output of the
algorithm is prioritized test case order.

International Journal of Latest Trends in Engineering and Technology (IJLTET)

Vol. 4 Issue 2 July 2014 169 ISSN: 2278-621X

Algorithm:

1. Begin

2. Set T’ empty

3. for each test case t � T do

4. Calculate test case weightage as TCW = RFT * FI+CP.

5. end for

6. Sort T in descending order on the value of test case weightage

7. Let T’ be T

8. end

Test Case /
Fault

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

F1 * *
F2 * * *
F3 * * *
F4 * *
F5 *
F6 * *
F7 * * *
F8 * *
F9 * * *
F10 * *
No. of faults 2 2 2 3 2 3 1 4 2 2
Time (ms) 9 8 14 9 12 14 11 10 10 13

Severity
Value

6 6 6 10 8 10 4 20 12 6

Customer
Assigned
priority
�����

�� �� �� 	�
� �� �� ��
� ��

Table : Time taken to detect faults & fault severity& customer assigned priority

From Proposed Technique Rate of fault detection of test cases T1, T2….T10 respectively

RFT1 = (2/9)*10=2.22

RFT2 = (2/8)*10=2.5

RFT3= (2/14)*10 =1.428

RFT4= (3/9)*10=3.33

International Journal of Latest Trends in Engineering and Technology (IJLTET)

Vol. 4 Issue 2 July 2014 170 ISSN: 2278-621X

RFT5= (2/12)*10=1.66

RFT6= (3/14)*10=2.142

RFT7= (1/11)*10=0.9

RFT8 = (4/10)*10=4.0

RFT9 = (2/10)*10=2.0

RFT10= (2/13)*10=1.538

From Equation (3) Fault impact of test cases T1, T2….T10 respectively.

FI1 = (6/20)*10 = 3.0

FI2 = (6/20)*10 = 3.0

FI3 = (6/20)*10 = 3.0

FI4 = (10/20)*10 = 5.0

FI5 = (8/20)*10 = 4.0

FI6 = (10/20)*10 = 5.0

FI7 = (4/20)*10 = 2.0

FI8 = (20/20)*10 = 10.0

FI9 = (12/20)*10 = 6.0

FI10 = (6/20)*10 = 3.0

From Equation (4) test case weightage of test cases T1, T2….T10 respectively.

TCW1 = 11.66

TCW2 = 12.5

TCW3 = 8.284

TCW4 = 25.65

TCW5= 9.64

TCW6= 18.71

TCW7= 2.8

TCW8= 50

TCW9 = 15

TCW10= 6.614

International Journal of Latest Trends in Engineering and Technology (IJLTET)

Vol. 4 Issue 2 July 2014 171 ISSN: 2278-621X

Prioritize the test case according to decreasing order of their test case weightage (TCW), so the prioritized test
case order is: T8, T4, T6, T9, T2, T1, T5, T3, T10, and T7.

Comparison between prioritized and non prioritized test case:

The comparison is drawn between prioritized and non prioritized test case, which shows that number of test
cases needed to find out all faults are less in the case of prioritized test case compared to non prioritized test
case. Formally, the APFD can be computed according to equation (5).

APFD = 1 – (TF1 + TF2 + …………+ TFm)/nm + 1/2n ……… (5)

where , m = the number of faults contained in the program under test P

n = The total number of test cases and

TFi = The position of the first test in T that exposes fault i.

APFD for Prioritized test case:

APFD = 1 – (1 + 5 + 2 + 2+ 1 + 1 + 2 + 6+ 2 + 9)/ 10*10 + 1/ 2* 10

APFD = 0.74

APFD for Non Prioritized test case:

APFD = 1-(1 + 8 + 2 + 4 + 2 + 8 + 8 + 4 + 1 + 4 + 1)/ 10* 10 + 1 / 2* 10

APFD = 0.63

IV.CONCLUSION

 Thus a new prioritization technique to improve the rate of fault detection of severe faults for Regression
testing is used. Here, two factors rate of fault detection and fault impact for prioritizing test cases are used.
Results indicate that the Average percentage of fault detected is better in case of prioritized test cases as
compared to random ordering of test cases. The results prove that the proposed prioritization technique is
effective.

ACKNOWLEDGMENT

 I would like to convey the sincerity and magnitude of my gratitude to my guide Dr. Preeti Gera, to whom
I am really indebted, for her influence in my studies and life & for her inspiration, suggestion and cooperation
during my research days. I have no hesitation to confess that she has enlightened a ray of hope in my heart for
propelling towards my goal. Her brilliant guidance catalysed my research work and inspired me to face every
difficult and challenging aspects pertaining to my studies. Her dedication towards my work is inexplicable. I
shall follow her ideology for the rest of my life.

REFERENCES:

[1] Elbaum, S., Malishvesky, A.G., Rothermel, G., 2002. Test case prioritization: a family of empirical studies. IEEE Transactions on
Software Engineering 28 (2), 159–182.

[2] Gregg Rothermel, Roland H. Untch, Chentun Chu and Mary Jean Harrold, “Prioritizing Test Cases for Regression Testing,” IEEE
Transactions on software Engineering, VOL. 27 NO.10,October 2001.

[3] A. G. Malishevsky, G. Rothermel, and S. Elbaum. Modeling the cost-benefits tradeoffs for regression testing techniques. In
proceedings of the International Conference on Software Maintenance, pages 204–213, Montreal, Quebec, Canada, October 2002.

[4] Alexey G. Malishevsky, Joseph R. Ruthruff, Gregg Rothermel, Sebastian Elbaum, Cost cognizant Test Case Prioritization, 2006
[5] Alexey G. Malishevsy, Gregg Rothermel, Sebastian Elbaum,”Modeling the Cost-Benefits Tradeoffs for Regression Testing

Techniques,” Proceedings of the International Conference on Software Maintenance ICSM’02), 2002 IEEE.
[6] Amrita Jyoti, Yogesh Kumar Sharma, Ashish Bagla, D. Pandey “RECENT PRIORITY ALGORITHM IN REGRESSION TESTING”

International Journal of Information Technology and Knowledge Management in July-December 2010, Volume 2.
[7] Ashwin G. Raiyani & Sheetal S. Pandya “Prioritization technique for minimizing number of test cases” International Journal of

Software Engineering Research & Practices Vol.1, Issue 1, Jan, 2011

International Journal of Latest Trends in Engineering and Technology (IJLTET)

Vol. 4 Issue 2 July 2014 172 ISSN: 2278-621X

[8] Bo Jiang & W. K. Chan “On the Integration of Test Adequacy, Test Case Prioritization, and Statistical Fault Localization”, 2010.
[9] Bo Jiang, Zhenyu Zhang , W. K. Chan, T. H. Tse, “Adaptive Random Test Case Prioritization” IEEE/ACM International Conference

on Automated Software Engineering,2009 .
[10] MaruanKhoury, “Cost Effective Regression Testing,” October 5,2006.
[11] Dennis Jeffrey and Neelam Gupta, “Improving Fault Detection Capability by Selectively Retaining TestCases during Test Suite

Reduction,” IEEE Transactions on software Engineering, VOL. NO.2, February 2007.
[12] Dongjiang You, Zhenyu Chen, Baowen Xu1, Bin Luo and Chen Zhang “An Empirical Study on the Effectiveness of Time-Aware Test

Case Prioritization Techniques” , 2011.
[13] G. Antoniol, M.D. Penta, and M. Harman, “Search-Based Techniques Applied to Optimization of Project Planning for a Massive

Maintenance Project,” Proc. 21st IEEE Int’l Conf. Software Maintenance (ICSM ’05), pp. 240-249, 2005

International Journal of Latest Trends in Engineering and Technology (IJLTET)

Vol. 4 Issue 2 July 2014 173 ISSN: 2278-621X

