
International Journal of Latest Trends in Engineering and Technology (IJLTET)

Vol. 3 Issue 3 January 2014 386 ISSN: 2278-621X

Software Testing Fundamentals: A Study

Jyoti Goyat
GJUS&T, Hisar

Sakshi Dhingra
GJUS&T, Hisar

Vinod Goyal

GJUS&T, Hisar

Vinay Malik
GJUS&T, Hisar

Abstract- Software provides a complete set of application development tools for building stand-alone, client-server, and
Internet-enabled applications. Software testing has three main purposes: verification, validation, and defect finding. Testing
software is operating the software under controlled conditions, to (1) verify that it behaves “as specified” (2) to detect errors
and (3) to validate that what has been specified is what the user actually wanted. This paper discusses about the different
issues related to software testing fundamentals.

I. INTRODUCTION
Software testing is more than just error detection. Testing software is operating the software under controlled
conditions, to verify, to detect errors, and to validate that what has been specified is what the user actually wanted.
Verification is the checking or testing of items, including software, for conformance and consistency by evaluating
the results against pre specified requirements. Error Detection, Testing should intentionally attempt to make things
go wrong to determine if things happen when they shouldn’t or things don’t happen when they should. Validation
looks at the system correctness-i.e. is the process of checking that what has been specified is what the user actually
wanted. In other words, validation checks to see if we are building what the customer wants/needs, and verification
checks to see if we are building that system correctly. Both verification and validation are necessary, but different
components of any testing activity. The definition of testing according to the ANSI/IEEE 1059 standard is that
testing is the process of analyzing a software item to detect the differences between existing and required conditions
(that is defects/errors/bugs) and to evaluate the features of the software item.
Testing helps in Verifying and Validating if the Software is working as it is intended to be working. This involves
using Static and Dynamic methodologies to Test the application. Software testing should not be confused with
debugging. Debugging is the process of analyzing and locating bugs when software does not behave as expected.
Although the identification of some bugs will be obvious from playing with the software, a methodical approach to
software testing is a much more thorough means of identifying bugs. Debugging is therefore an activity which
supports testing, but cannot replace testing.
However, no amount of testing can be guaranteed to discover all bugs. Other activities which are often associated
with software testing are static analysis and dynamic analysis. Static analysis investigates the source code of
software, looking for problems and gathering metrics without actually executing the code. Dynamic analysis looks at
the behavior of software while it is executing, to provide information such as execution traces, timing profiles, and
test coverage information.

II. SOFTWARE TESTING FUNDAMENTAL
Testing is a process of executing a program with the intent of finding an error. A good test case is one that has a high
probability of finding an as yet undiscovered error. A successful test is one that uncovers an as yet undiscovered
error. Minimize the risk of product failure. Testing should systematically uncover different classes of errors in a
minimum amount of time and with a minimum amount of effort.
A secondary benefit of testing is that it demonstrates that the software appears to be working as stated in the
specifications. The data collected through testing can also provide an indication of the software's reliability and
quality. But, testing cannot show the absence of defect -- it can only show that software defects are present.

International Journal of Latest Trends in Engineering and Technology (IJLTET)

Vol. 3 Issue 3 January 2014 387 ISSN: 2278-621X

Software Testing Life Cycle (STLC). Software Testing is not a just a single activity. It consists of series of activities
carried out methodologically to help certify software product. These activities (stages) constitute the Software
Testing Life Cycle (STLC) as shown in figure 1.

Fig. 1: STLC

Each of these stages has a definite Entry and Exit criteria, Activities & Deliverables associated with it.
Requirement Analysis
During this phase, test team studies the requirements from a testing point of view to identify the testable
requirements. The QA team may interact with various stakeholders (Client, Business Analyst, Technical Leads,
System Architects etc) to understand the requirements in detail. Requirements analysis, also called requirements
engineering, is the process of determining user expectations for a new or modified product. These features, called
requirements, must be quantifiable, relevant and detailed. In software engineering, such requirements are often
called functional specifications. Requirements could be either Functional (defining what the software must do) or
Non Functional (defining system performance /security availability) .Automation feasibility for the given testing
project is also done in this stage.
Activities: 1. Identify types of tests to be performed. Gather details about testing priorities and focus. 2. Prepare
Requirement Traceability Matrix (RTM). 3. Identify test environment details where testing is supposed to be carried
out. 3. Automation feasibility analysis (if required).
Deliverables: RTM Automation feasibility report. (if applicable)

III. TEST PLANNING
This phase is also called Test Strategy phase. Typically, in this stage, a Senior QA manager will determine effort
and cost estimates for the project and would prepare and finalize the Test Plan. A Software Test Plan is a document
describing the testing scope and activities. It is the basis for formally testing any software/product in a project. A
document describing the scope, approach, resources and schedule of intended test activities. It identifies amongst
others test items, the features to be tested, the testing tasks, who will do each task, degree of tester independence, the
test environment, the test design techniques and entry and exit criteria to be used, and the rationale for their choice,
and any risks requiring contingency planning. It is a record of the test planning process.

A. Test Plan Types
1. Master Test
Plan: A single high-level test plan for a project/product that unifies all other test plans.
2. Testing Level Specific Test Plans: Plans for each level of testing. Unit Test Plan, Integration Test Plan, System
Test Plan, Acceptance Test Plan. Testing Type Specific Test Plans: Plans for major types of testing like
Performance Test Plan and Security Test Plan.
Activities: 1.Preparation of test plan/strategy document for various types of testing Test tool selection. 2. Test effort
estimation. 3. Resource planning and determining roles and responsibilities. 4. Training requirement
Deliverables: Test plan /strategy document, Effort estimation document.
B. Test Case Development
This phase involves creation, verification and rework of test cases & test scripts. Test data, is identified/created and
is reviewed and then reworked as well.
A set of inputs, execution preconditions, and expected outcomes developed for a particular objective, such as to
exercise a particular program path or to verify compliance with a specific requirement.

International Journal of Latest Trends in Engineering and Technology (IJLTET)

Vol. 3 Issue 3 January 2014 388 ISSN: 2278-621X

It is a detailed procedure that fully tests a feature or an aspect of a feature. Whereas the test plan describes what to
test, a test case describes how to perform a particular test. We need to develop a test case for each test listed in the
test plan.
Activities: 1. Create test cases, automation scripts (if applicable) 2. Review and baseline test cases and scripts 3.
Create test data (If Test Environment is available)
Deliverables: Test cases/scripts, Test data
C. Test Environment Setup
Test environment decides the software and hardware conditions under which a work product is tested. Test
environment set-up is one of the critical aspects of testing process and can be done in parallel with Test Case
Development Stage. Test team may not be involved in this activity if the customer/development team provides the
test environment in which case the test team is required to do a readiness check (smoke testing) of the given
environment.
Activities: 1.Understand the required architecture, 2.environment set-up and prepare hardware and software
requirement list for the Test Environment 3. Setup test Environment and test data 4. Perform smoke test on the build
Deliverables: Environment ready with test data set up, Smoke Test Results
D. Test Execution
During this phase test team will carry out the testing based on the test plans and the test cases prepared. Bugs will be
reported back to the development team for correction and retesting will be performed.
Activities: 1. Execute tests as per plan 2. Document test results, and log defects for failed cases 4. Map defects to
test cases in RTM 4. Retest the defect fixes 5. Track the defects to closure.
Deliverables: Completed RTM with execution status, Test cases updated with results, Defect reports
E. Test Cycle Closure
Testing team will meet, discuss and analyze testing artifacts to identify strategies that have to be implemented in
future, taking lessons from the current test cycle. The idea is to remove the process bottlenecks for future test cycles
and share best practices for any similar projects in future.
Activities: 1.Evaluate cycle completion criteria based on Time, Test coverage, Cost, Software, Critical Business
Objectives, Quality 2. Prepare test metrics based on the above parameters. 3. Document the learning out of the
project 4. Prepare Test closure report 5.Qualitative and quantitative reporting of quality of the work product to the
customer. 6. Test result analysis to find out the defect distribution by type and severity.
Deliverables
• Test Closure report
• Test metrics

IV. TYPES OF TESTING
Black box testing-Internal system design is not considered in this type of testing as shown in figure 2.

Figure2: Black Box Testing

Tests are based on requirements and functionality. Black box testing takes an external perspective of the test object
to derive test cases. These tests can be functional or non-functional, though usually functional. The test designer
selects valid and invalid input and determines the correct output. There is no knowledge of the test object's internal
structure.
White box testing- This testing is based on knowledge of the internal logic of an application’s code. Also known as
Glass box Testing. Internal software and code working should be known for this type of testing. Tests are based on
coverage of code statements, branches, paths, conditions. White Box Testing also known as Clear Box Testing,
Open Box Testing, Glass Box Testing, Transparent Box Testing, Code-Based Testing or Structural Testing.
A. Unit Testing

International Journal of Latest Trends in Engineering and Technology (IJLTET)

Vol. 3 Issue 3 January 2014 389 ISSN: 2278-621X

Testing of software components or modules typically done by the programmer not by testers, as it requires detailed
knowledge of the internal program design and code which may require developing test driver modules. Unit testing
is a software development process in which the smallest testable parts of an application, called units, are individually
and independently scrutinized for proper operation. Unit testing is often automated but it can also be done manually.
B. Integration Testing
Testing of integrated modules to verify combined functionality after integration. Modules are typically code
modules, individual applications, client and server applications on a network, etc. This type of testing is especially
relevant to client/server and distributed systems. Testing is that in which modules are combined and tested as a
group. Modules are typically code modules, individual applications, client and server applications on a network, etc.
Integration Testing follows unit testing and precedes system testing.
C. System Testing
Entire system is tested as per the requirements. Black-box type testing that is based on overall requirements
specifications, covers all combined parts of a system. The purpose of this test is to evaluate the system’s compliance
with the specified requirements.

Fig. 3: Hierarchy of Testing

1) Regression testing
Which is selective retesting of a system or component to verify that modifications have not caused unintended
effects and that the system or component still complies with its specified requirements (IEEE, 1990). As with
integration testing, regression testing can be done via black-box test cases, white-box test cases, or a combination of
the two. White-box unit and integration test cases can be saved and rerun as part of regression testing.
2) Acceptance testing
Testing to verify a product meets customer specified requirements. A customer usually does this type of testing on a
product that is developed externally. Acceptance testing is a test conducted to determine if the requirements of a
specification or contract are met.
3) Beta testing
Testing when development and testing are essentially completed and final bugs, problems need to be found before
the final release. Beta Testing is typically done by end-users or others, not by programmers or testers.
4) Functional testing
Validating an application or Web site conforms to its specifications and correctly performs all its required functions.
This entails a series of tests which perform a feature by feature validation of behavior, using a wide range of normal
and erroneous input data. This can involve testing of the product's user interface, APIs, database management,
security, installation, networking, etc. testing can be performed on an automated or manual basis using black box or
white box methodologies.
5) Stress testing

International Journal of Latest Trends in Engineering and Technology (IJLTET)

Vol. 3 Issue 3 January 2014 390 ISSN: 2278-621X

System is stressed beyond its specifications to check how and when it fails. Doing perform under heavy load like
putting large number beyond storage capacity, complex
database queries, continuous input to system or database load. Testing conducted to evaluate a system or component
at or beyond the limits of its specified requirements to determine the load under which it fails and how. A graceful
degradation under load leading to non-catastrophic failure is the desired result. Often Stress Testing is performed
using the same process as Performance Testing but employing a very high level of simulated load. Mutation Testing:
Mutation testing is a method for determining if a set of test data or test cases is useful, by deliberately introducing
various code changes (‘bugs’) and retesting with the original test data/cases to determine if the ‘bugs’ are detected.
Proper implementation requires large computational resources Sanity testing: Typically an initial testing effort to
determine if a new software version is performing well enough to accept it for a major testing effort. For example, if
the new software is crashing systems every 5 minutes, bogging down systems to a crawl, or destroying databases,
the software may not be in a ‘sane’ enough condition to warrant further testing in its current state.

V. CONCLUSION
Software testing is a critical element in the software development life cycle and has the potential to save time and
money by identifying problems early and to improve customer satisfaction by delivering a more defect-free product.
Unfortunately, it is often less formal and rigorous than it should, and a primary reason for that is because the project
staff is unfamiliar with software testing methodologies, approach has, and tools.
Presently we are unaware about the relative ordering of software testing techniques and if we are to make software
testing more effective by selecting effective testing techniques then we need to place existing software testing
techniques at least on an ordinal scale. To do so we need to carry out experimentation on large scale but that needs
to in a way that can be compared and will have no contradictions. For that we also need to establish common and
standard parameters so that there are little variations in experimentation goals. However the actual research settings
of creating reasonable comparative models have not been totally explored.

VI.REFERENCES

[1] B. Beizer, Software Testing Techniques. London: International Thompson Computer Press, 1990.
[2] B. Beizer, Black Box Testing. New York: John Wiley & Sons, Inc., 1995.
[3] A. Bertolino, "Chapter 5: Software Testing," in IEEE SWEBOK Trial
[4] Version 1.00 May 2001.
[5] B. W. Boehm, Software Engineering Economics. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1981.
[6] L. Copeland, A Practitioner's Guide to Software Test Design. Boston: Artech ,House Publishers, 2004.
[7] R. D. Craig and S. P. Jaskiel, Systematic Software Testing. Norwood, MA: Artech, House Publishers, 2002.
[8] E. W. Dijkstra, "Notes on Structured Programming," Technological
[9] University, Eindhoven T.H. Report 70-WSK-03, Second edition, April, 1970.
[10] D. Galin, Software Quality Assurance. Harlow, England: Pearson, Addison,Wesley, 2004.
[11] Talby, D., Keren, A., Hazzan, O., and Dubinsky, Y. "Agile software
[12] testing in a large-scale project,"IEEE Software (23:4), 2006,
[13] Hutcheson, M. L. Software testing fundamentals: Methods and metrics, Wiley Publishing Inc., Indianapolis,
Indiana, 2003.
[14] Issac, G., Rajendran, C., and Anantharaman, R. N."Determinants of software quality: Customer’s perspective,"
TQM & Business Excellence (14:9),2003.

