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Abstract: This paper presents a review on the major benchmarking functions used  for performance control of Genetic Algorithms 
(GAs). The difficulties of providing benchmarking of Genetic algorithms that is meaningful and logistically viable. To be meaningful the 
benchmarking test must give a fair comparison that is free, as far as possible, from biases that favor one style of algorithm over 
another. To be logistically viable it must overcome the need for pair wise comparison between all the proposed algorithms. The general 
behavior of two basic GAs models, the Generational Replacement Model (GRM) and the Steady State Replacement Model (SSRM) is 
evaluated. 
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I.    INTRODUCTION 
 

Genetic algorithms (GAs) are search methods based on principles   of   natural   selection.   GAs   encodes   the 
decision variables of a search problem into finite-length strings. The strings which are candidate solutions to the 
search problem are referred to as chromosomes, the string are referred to as genes and the values of genes are 
called alleles. In contrast to traditional optimization techniques, GAs work with coding of parameters, rather than 
the parameters themselves. To evolve good solutions and to implement natural selection, we need a measure for 
good solutions from bad solutions. The measure could be an objective function that is a mathematical model, or 
it can be a subjective function where humans choose better solutions over worse ones. In essence, the fitness 
measure must determine a candidate solution’s relative fitness, which will subsequently be used by the GA for 
good solutions. The population size, which is usually a user-specified parameter, is one of the important factors 
affecting the scalability and performance of genetic algorithms. The large population sizes lead to unnecessary 
expenditure of valuable computational time. Once the problem is encoded in a chromosomal manner and  a  fitness 
measure for good solutions from bad ones has been chosen, we can start to evolve solutions to the search problem 
using the following steps: 

A. Initialization:  The initial population of candidate solutions is usually generated randomly across the search 
space. However, domain-specific knowledge or other information can be easily incorporated. 

B. Evaluation: Once the population is initialized or an offspring population is created, the fitness values of the 
candidate solutions are evaluated. 

C. Selection: Selection allocates more copies of those solutions   with   higher   fitness   values   and   thus imposes 
the survival-of-the-fittest mechanism on the candidate solutions. The main idea of selection is to prefer better 
solutions to worse ones, and many selection procedures have been proposed to accomplish this idea, including 
roulette-wheel selection, stochastic universal selection, ranking selection and tournament selection, some of 
which are described in the next section. 

D. Recombination: Recombination combines parts of two or more parental solutions to create new, possibly better 
solutions (i.e. offspring). There are many ways of accomplishing this (some of which are discussed in the 
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next section), and competent performance   depends   on   a   properly   designed recombination 
m e c h a n i s m .  The offspring under recombination will not be identical to any particular parent and will 
instead combine parental traits in a novel manner. 

E. Mutation: While recombination operates on two or more parental chromosomes, mutation locally but randomly 
modifies a solution. Again, there are many variations of mutation, but it usually involves one or more changes 
being made to an individual’s trait or traits. In other words, mutation performs a random walk in the vicinity 
of a candidate solution. 

F.  Replacement: The offspring population created by selection, recombination, and mutation replaces the 
original parental population. Many replacement techniques such as elitist replacement, generation- wise 
replacement and steady-state replacement methods are used in GAs. 
Repeat steps B-F until a terminating condition is met. 

 
II.   REVIEW OF BENCHMARKING FUNCTIONS 

 
In this section various GA models and the suggested parameter sets are briefly presented by researchers in order to 
establish the most frequently used functions are discussed. 
De Jong (1975) constructed a test of five problems in function minimization. He translated Holland’s theories 
into practical function optimization and used two performance    measures    for    judging    the    genetic 
algorithms.  First,   he   defined   on-line   and   off-line performance as an average of all costs up to the present 
generation and as the best cost found up to the present generation respectively. The functions suggested by De 
Jong have certain characteristics, which depict many of the difficulties, found in optimization problems. Following 
his study, a number of people suggested and tested various improvements to   the basic g e n e t i c  algorithm. 
Goldberg (1989) nicely summarizes D e  Jong’s work. 
Grefenstette(1986)  used  a  meta-genetic algorithm to optimize the on-line and offline performance of genetic 
algorithms based on varying six parameters: population size Ps ,crossover probability Cp, mutation probability 
Mp, generation gap G, scaling window, and whether elitism is used or not.  
The metagenetic algorithm used 
Ps = ¼ 50, Cp ¼ 0.6, Mp ¼ 0.001, G ¼ 1.0, no scaling, and elitism.  
The best genetic algorithm for on-line performance had Ps ¼ 30, Cp ¼ 0:95, Mp ¼ 0:01, G ¼1.0, scaling of the 
cost function and elitism. 
Scwefel’s (1977) test set, consisting of 62 functions that cover an enormous diversity of different topologies is 
surely one of the most extensive function sets. 
Extensive empirical studies concerning the performance of various crossover operators have been performed by 
Schaffer et al., published in several papers which shed some light on the relation between performance, 
parameterization and configuration of Genetic Algorithms [3, 5, and 17]. Schaer et al. (1989) used discrete sets of 
parameter values (Ps ¼ 10; 20; 30; 50; 100; 200; Mp ¼ 0:001; 0:002; 0:005; 0:01; 0:02; 0:05; 0:10; Cp ¼ 0:05 
to 0:95 in increments of 0.10 and 1 or 2 crossover points) that had a total of 8400 possible combinations. 
Baeck (1991) emphasizes on two test functions (Sphere model, Rastrigin) for finding the total optimum and in the   
fast   convergence.   They   had   discrete   sets   of parameter values (probability crossover¼0.6, population 
size¼50, string length¼32n, mutation probability¼0.001, tournament selection and crossover two points). 

  Baeck et al. (1998) in formulates heuristic rules indicating that performance is decreasing both for large 
population s i z e    (m >    200)   combined   with   large mutation probability pm > 0:05 as well as for small 
population size (m < 20) combined with small mutation probability pm ¼ 0; 002. Finally, he describes several 
artificial test functions in Evolutionary Programming, including the sphere model, Rosenbrock’s function, 
Ackley’s  function,  the  function  after  Fletcher  and Powell and fractal function. 
 
Patton et al. (1998) in explore an alternative population- based form of adaptation for evolutionary computation, 
termed as Guided Gaussian Mutation (GGM), which is designed specifically as a localized search operator. In 
testing the potential electiveness of the GGM operator, Patton selected a number of optimization test functions 
from   the   literature.   Algorithms   were   tested   with population sizes of 200 and 500. All test runs were 
tracked for 500 generations. 
 
Michalewicz (1993)  presented an  empirical investigation of the performance of a hierarchy of evolution 
programs and indicated that generality grows at the expense of performance. 
Salomon (1995) analyzed the benefits of small mutation rates that are commonly used and focuses on the 
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performance loss of typical GAs when applying a rotation   to   the   coordinate   system   the   theoretical analysis 
presented in his paper shows that most of the widely   used   test   function   have   n   independent parameters and 
that, when optimizing such functions, many GAs scale with an O(nlnn) complexity. 
 
Pohlheim (1997) describes a number of test functions implemented for use with the Genetic and Evolutionary 
Algorithm Toolbox for Matlab. These functions are drawn from the literature on genetic algorithms’ evolutionary 
strategies and global optimization. 
 
In addition to the experiments mentioned so far, carried out by GA researchers, one can observe that there are also 
other suggestions as regards function sets from scientists of other relevant fields. We suggestively refer to one of 
the best known in the field of function optimization, by More  Garbow et al. (1981) suggested a total of 34 
functions which has become a landmark for many researchers since then. More Garbowin produced a relatively 
large collection of carefully coded test functions and designed very simple procedures for testing the reliability and 
robustness of unconstrained optimization software. The functions they suggested are appropriate for comparative 
tests of various algorithmic methods used in optimization.
Finally, another important research carried out by Ford, Riley, and Freeman involves an effort to evaluate the NAG 
parallel library. More specifically, they evaluate the solution improvement due the inclusion of parallelism offers to 
the finding of the total optimum, by providing the comparative results of the serial and parallel routines for solving 
the some problems. The functions they chose are also used in the work of More, Garbow and Hillstrom and are: (a) 
Extended Rosenbrock, (b) Watson. 
Meysenburg in examine to what degree the quality of the PRNG employed affects  the  performance  of  a simple 
GA including eleven test functions . 
Finally, there are World Wide Web  pages [20,  21], which contain information on several test functions that 
can be used to evaluate the performance of GAs. The test suite of functions, used to evaluate the performance of 
GAs during the IEEE International Conference on Evolutionary Computation in 1996, is particularly interesting. 
 

III.   SET OF BENCHMARKING FUNCTIONS 
 
We concluded to a total of 11 optimization functions. Table I summarizes some of the widely-used test functions. 
 
A function is multimodal if it has two or more local optima. A function of P variables is separable if it can be  
rewritten  as  a  sum  of  P  functions  of  just  one variable. 
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 Sphere                                                                                           no                 yes             n/a 
 
 
 

Schwefel's                                                                                     no                 no              n/a 
 

 
 

double sum 
 
 
Rosenbrock                                                                                                        no              n/a 

 
 
Rastrigin                                                                                         es                yes             n/a 

 

 
 

Schwefel                                                                                                            yes             n/a 
 
 
 

Ackley                                                                                                                no              yes 
 
 
 

Griewangk                                                                                    yes                no              yes 
 

 
 

Fletcher                                                                                         yes                no              no 
 
 
Powell 

) 
 
 

Langerman                                                                                                         no              no 
 

 
 

 

Table1

IV.   GENERAL FRAMEWORK OF METHODLOGY 
 

The main performance metric is the efficiency of the genetic algorithm, (i.e. the ability to reach an optimum is 
increased the number of populations we whether the number of GA iterations required to  find a  solution 
decreased).   In   order   to   facilitate   an   empirical comparison of the performance of GAs, a test environment 
for these algorithms must be provided in the form of several objective functions f. We used the PGA Pack [8] 
library and we tested both population replacement models available in the field of serial GAs. The first, the 
generational replacement genetic algorithm (GRGA), replaces the entire population each generation and is the 
traditional genetic algorithm. The second variant is the steady state genetic algorithm (SSGA) in which only a few 

Function Defination Mutimodal Seperable Regular 
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structures are generated in each iteration (λ=1 or2) and they are inserted in the current populations Q=P(t). The 
criterion we used for ending the algorithm stipulates the following: 
‘‘The executions stop only if after a certain number of repetitions (in this paper 100 repetitions) the best individual 
is not substantially mutated.’’ 
The population size affects both the overall performance and the efficiency of GAs. Two population replacement 
schemes are used.  The first, the generational replacement model (GRM), replaces the entire population each 
generation and is the traditional genetic algorithm. The second, the steady state replacement model 
(SSRM), typically replace as only a few strings each generation.  
Two PNGs have been tested, i.e. (a) PGAR Uniform and (b) ISAAC (Indirection, Shift, Accumulate, Add, and 
Count). Each time PGAPack is run, unique sequence of random numbers is used. In the package, the initial 
population of individuals is created by selecting each bit uniformly at random. For each bit position of each 
individual in the population, a call is made to a PNG to obtain a real number in the range [0, 1]. 
We obtained the ISAAC PNG from the World Wide Web [22]. It is intended to be a PNG worthy of use in 

cryptographic applications. The claimed period for the PNG ranges from 240 to 28295, depending on the seed 
value. Then, we found the online value for each PNG and test function, and then compared this value with the true 
optimal value for each function. The crossover in our experiments is applied with six probability values pc 2  
½0:6; 0:95with step 0.05 [4, 8, 17], and its application or non-application is defined by a random number 
generator. When it is not applied, the offspring is considered as an exact copy of one of the parents with equal 
probability. Mutation on the other hand is applied with a 1=2l probability where l is the alphanumerical string [2, 
9]. 

 
V.      CONCLUSION 

An issue we examine in this paper is to what degree the performance of the PNG employed effects the 
performance of the GA. For functions, ISAAC PNG drove the GA to its maximum value in fewer generations. In 
fact, when the GA did produce an individual with optimal value, there was no statistical difference between the 
number of generations required to produce the individual when the GA was driven by a good PNG (ISAAC) and 
when it was driven by PGARUniform.  When  optimizing  multimodal functions, a PNG has even more severe 
consequences. Therefore, the experiments described above are important in that they identify approximately 
optimal parameter settings for the four performance measures considered. 
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