Vibration Analysis Plates with Spot Welded Stiffeners

Pravin Nana Jadhav

Department of Mechanical Engineering Finolex Academy of Management and Technology, Ratnagiri, Maharashtra, India.

Prof.Kaushal Prasad

Department of Mechanical Engineering Finolex Academy of Management and Technology, Ratnagiri, Maharashtra, India.

Abstract- Spot welding is most preferred and widely used method for joining the metal sheets in automotive and many other industrial assembly operations. So, spot weld is used to join the plates and stiffeners in this work. This study focuses effect of spot weld pattern and profiles of stiffeners under the vibration analysis of structures.

Both FEA and experimental study are carried out for vibration analysis of plates with spot welded stiffeners. In FEA study, modal analysis method is used to find the natural frequencies of all test structural models. Ls-Dyna and HYPERMESH software are used for FEA study. To back up the results obtained by FEA study, experimental analysis is done to find frequencies of the same models using FFT analyzer.

Keywords – Stiffener, Structures.

I. INTRODUCTION

The objective of this investigation to study the effect of spot weld patterns and profiles of stiffeners on the vibration characteristics of plates with spot welded stiffeners. The stiffened structural elements are widely useful in engineering mainly for the application of steel plates for hulls of ships, steel bridges and aircraft structures. These types of structures have wide application in modern industries.

Automotive bodies and many other structures are composed of metal sheets joined by spot welds. A spot weld is materialized by clamping the sheets with two pincers while applying a force and transmitting current. The electrical resistance of contacting sheets generates sufficient heat at the metal surfaces to melt the metal. Thus nugget develops and sheet metals are joined. Spot weld joints provides localized connection thus lead to high stress concentration in the joined plates. Excessive stresses and premature failure occurs due to improper design.

A designer significantly concentrates the strength of component by introducing the changes in its geometry and weld patterns that will reduce the vibration of the structural models. Also increases the strength of the structures. The optimum design of geometry and weld patterns can be obtained optimal performance i.e good strength to the composed structures.

In the literature, there are some studies about optimization of spot welded structures. Ahmet H Er'tas, Fazil O. Sonmez [1] optimized the spot welded plates for maximum fatigue life. They suggest that number of spot welds significantly affects the fatigue strength. Sheet thickness and material are studied to the strength requirements of the structures. The effect of the size of the welds diameter and pitch of the weld on the account of absorbed energy is studied [2].

Some researchers have been published regarding vibration analysis of stiffened laminated plates and shells. It was found that stiffeners profile and its arrangement have great effect on the natural frequencies and mode shapes of the plates [3]. Experimental analysis of composed structures, including setup is studied [4-5] to find the natural frequencies using FFT analyzer.

This study of vibration analysis of plates with spot welded stiffeners includes study of spot weld arrangement and stiffener parameters such as profile, dimensions and arrangement. Good agreement of optimum design of structure due to FEA study and experimental study.

II. DETAIL DESCRIPTION OF ALL STRUCTURAL MODELS

The different structural models investigated for this study, its brief information given below. Models are made of mild steel material.

Fig.2 Top view of structural model

Fig.2 describes the dimensional details of weld patterns. Diameter of each spot weld is 5mm. This 28study includes the variation in weld patterns.

B. VARIOUS SECTIONS AND THEIR NOMENCLATURES

Figure3. Sections of different structures and their nomenclature

C. VARIOUS SPOT WELD PATTERN AND TEIR NOMENCLATURES :

The various spot weld patterns to be tested are as given below

(a) Weld pattern P1

(b) Weld pattern P2

International Journal of Latest Trends in Engineering and Technology (IJLTET)

(c) Weld pattern P2

Figure 4. Top view of various spot weld patterns and their nomenclature

III. FINITE ELEMENT ANALYSIS

This is most representative technique to prepare the model of structural object. FE models are generated to obtained detailed response of structures and to determine structural characteristics. F.E Models are more practical because they predict realistic structural response. This section describes the geometrical and finite element modeling process in detail. Also brief information regarding analysis of structural models are included. The following mentioned design of experiment matrix used for this study.

Design of experiment	Section 1	Section 2	Section 3	Section 4
Pattern1	S1P1	S2P1	S3P1	S4P1
Pattern2	S1P2	S2P2	S3P2	S4P2
Pattern3	S1P3	S2P3	S3P3	S4P3

A. MODAL ANALYSIS OF STRUCTURAL MODELS:

Modes are inherent properties of structure and are determined by material properties (mass, damping and stiffness), and boundary conditions of the structure. Each mode is defined by natural frequency, mode shape (modal parameters). If either the material properties or the boundary conditions of a structure change its modes will change. Also natural frequencies are different due to different vibrations. This study includes the different structures. So, material properties and boundary conditions are different. Thus analysis of structures is carried out by observing natural frequencies of the same structures.

B. FLOW OF WORK AND METHODOLOGY FOR MODAL ANALYSIS OF PROJECT STRUCTURAL MODELS:

Figure 5. Flow chart of methodology of modal analysis

C. FREQUENCIES OF ALL STRUCTURAL MODELS AND MODE SHAPES:

The result includes frequencies of all structural models in KHz. First six modes are the rigid modes. Therefore remaining modes are considered for analysis.

D. RESULTS OF MODAL ANALYSIS:

	Table -	02 Results of Modal Analysis						
	Frequencies in Hz							
Structures	Mode 7	Mode 8	Mode 9	Mode 10				
S1P1	226.650	230.701	268.247	269.715				
S1P2	209.274	212.181	264.864	266.645				
S1P3	245.127	252.264	272.405	272.677				
S2P1	275.249	282.271	284.363	287.074				
S2P2	247.623	253.482	255.186	266.274				
S2P3	238.224	256.065	257.060	275.462				
S3P1	273.436	287.065	288.692	303.242				
S3P2	241.294	252.399	259.957	269.215				
S3P3	231.816	256.872	258.715	305.275				
S4P1	285.812	287.895	416.569	442.629				
S4P2	273.599	274.906	414.107	440.291				
S4P3	295.049	242.551	412.654	436.261				

V. EXPERIMENTAL ANALYSIS:

Experimental modal analysis is very useful vibration analysis tool, providing an understanding of structural characteristics, operating conditions and performance criteria. For this study, modal testing conducted to free-free boundary condition for each structure. The structures are tested for one hammer point. The location for the impact is carefully chosen to get accurate results. The vibration response measured using FFT Analyzer system

Structures are made up of mild steel with nominal thickness of 0.7mm. The welding is carried out using spot welding machine has power of 10 KVA. The electrodes have a truncated conical shape with a flat circular contacting area of 5 mm diameter.

A. EXPERIMENTAL SETUP:

Figure 18. Experimental Setup

B.GRAPHICAL EXPERIMENTAL RESULTS OF ALL STRUCTURES: Structure (S1P1)

Structure (S2P2)

Structure	S1P1	S1P2	S1P3	S2P1	S2P2	S2P3	S3P1	S3P2	S3P3	S4P1	S4P2	S4P3
S												
Frequenc												
у	232.0	208.0	236.0	262.0	236.0	240.0	286.0	260.0	228.0	284.0	265.0	302.0
(Hz)	0	0	0	0	0	0	0	0	0	0	0	0

VI. CONCLUSION

From the FEA and experimental study, following conclusions are made;

- 1. The natural frequency of seventh mode of vibration lies between 209 Hz to 295 Hz in FEA and it is 208 Hz to 302 Hz from experimental study
- 2. Experimental results back up the results of FEA study. Both the results are nearly same.
- 3. The observation made from both the studies that, the natural frequency is less for S1P2 structure and it is highest for S4P3 structure.
- 4. From the above FEA and experimental results, it is revealed that, the profile of stiffener and weld pattern having much more influence on natural frequencies of the structural model.
- 5. The selection of profile of stiffeners and weld pattern depends upon the excitation frequency of the system in order to avoid resonance condition of the system. The structures having less frequency are useful for the application where high excitation frequency and the structures having high frequency are useful for the application where less excitation frequency.

REFERENCES

- Ahmet H. Ertas, Fazil O. Sonmez, "Design optimization of spot-welded plates for maximum fatigue life", Finite Elements in Analysis and Design, 47 (2011) 413–423.
- 2] E Rusinski, A. Kopczynski, J.Czmochowski, "Test of thin walled beams joined by spot welding", Journal of material technology 157-158(2004) 405-409.
- [3] S.M.Nancy, M. Q. Abdullah, M. M. Ai, "Free vibration analysis of stiffened conical shell", Journal of Engineering coll. of engineering, vol. 8, 2002, 263-275.
- [4] Matteo Palmonella,Machael I.Frisswell,Arthur W. Lees., "Guidelines for the implementation of the C-WELD and ACM-2 spot weld model in structural dynamics",Finite Element Analysis,41(2):193-210,December2004
- [5] N.A. Hussain,H.H.Khodaparast, A Snaylam,S.James, G Dearden, H Quyang "Finite element modeling and updating of laser spot weld joint I a top-hat structure for dynamic analysis", 2009
- [6] Matteo Palmonella, Machael I.Frisswell, Arthur, "Improving Spot weld Models In structural Dynamics", Finite Element Analysis, 2003.
- [7] Hessamoddin Moshayedi, Iradj Sattari-Far, "Numerical and experimental study of nugget size growth in resistance spot welding of austenitic stainless steels" Journal of Materials Processing Technology, 212 (2012) 347–354.
- [8] Q.I.Bhatti, M. Quisse, S. Cogan, "An adaptive optimization procedure for spot welded structure", computers and structure 89 (2011) 1697-1711.
- Biswajit Tripathy, Srinivasan Suryanarayan "Analytical studies for buckling and vibration of weld-bonded beam shells of rectangular crosssection", International Journal of Mechanical Sciences, 51 (2009) 77–88.