

Recovery of Concurrent Processes using Rules

and Data Dependencies

Ashwini B.Shinde

Department of Information Technology

Gharda Institute Of Technology,Lavel, Chiplun,Maharashtra, India

Akshaya A.Bhosale

Department of Information Technology
Gharda Institute Of Technology,Lavel, Chiplun,Maharashtra, India

Abstract- This paper presents a recovery algorithm for service execution failure in the context of concurrent process

execution. The recovery algorithm was specifically designed to support a rule-based approach to user-defined correctness

in execution environments that support a relaxed form of isolation for service execution. Data dependencies are analyzed

from data changes that are extracted from database transaction log files and generated as a stream of deltas from Delta-

Enabled Grid Services. The deltas are merged by time stamp to create a global schedule of data changes that, together

with the process execution context, are used to identify processes that are read and write dependent on failed processes.

Process interference rules are used to express semantic conditions that determine if a process that is dependent on a failed

process should recover or continue execution. The recovery algorithm integrates a service composition model that

supports nested processes, compensation, contingency, and rollback procedures with the data dependency analysis

process and rule execution procedure to provide a new approach for addressing consistency among concurrent processes

that access shared data. We present the recovery algorithm.

Keywords – Service composition, relaxed isolation, concurrent process recovery, transaction processing.

I. INTRODUCTION

Web services and service-oriented computing has changed data access patterns for distributed computing

environment, which develop processes that are composed of distributed service executions. Some challenges for the

semantic correctness of concurrent process execution have been faced by processes which executes over web

services and Grid services. For individual services, they have their own local transaction semantics, where commit

operation of service is controlled by the residing service. It results in commit of service before completion of

process. Due to relaxation of isolation in service execution of a process results in dirty read and write[1].

To recover from dirty read and write compensation is undo to undo a process. Compensation procedure affects some

concurrently executing processes, to identify this dependency Process Interference Rules (PIR)[8] are used. This

ability of capturing and analyzing data dependencies is absent in current service-oriented architectures.

To resolve problem related to execution failure, service recovery, and concurrent process interference based on

read/write dependency DeltaGrid projects are used, which create a semantically robust execution environment for

processes that execute over Grid Services. For this we are using Delta-Enabled Grid Services (DEGS) [5][9][10]. A

DEGS records data changes in terms of deltas. Deltas are used as input to a Process History Capture System (PHCS),

which merges multiple streams of deltas to create time-sequenced global schedule of data changes. This global

schedule is used to construct a process dependency graph (PDG) [7], which gives idea about the processes that are

directly and indirectly dependent on data of the failed process. After indentifying dependencies PIR[8] apply semantic

correctness conditions to determine whether recovery is required for dependent process or not. Some concepts like

rollback, compensation, forward recovery and logging have been used to achieve recovery from failure.

II. RELATED WORK

A. Delta-Enabled Grid Services

DEGS provides access to the incremental data changes associated with services execution in the context of globally

execution process. A DEGS uses an OGSA-Dai Grid Data Services for data interaction, modifying SQLUpdate

activity feature for database access to provide the functionality necessary for capturing and returning delta values.

A DEGS uses the object delta concept to create a conceptual view of relational deltas. A tuple of relation can be

associated with an instance of DeltaObject. A DeltaObject has a className (relation) to which object belongs, and

International Journal of Latest Trends in Engineering and Technology (IJLTET)

Vol. 3 Issue 1 September 2013 1 ISSN: 2278-621X

objectId (primary key) to uniquely identify the associated object instance. A DeltaObject can have multiple

DeltaProperty object. Each DeltaProperty object has a PropertyName, and one or more PropertyValues(delta

values). A propertyValue contains an oldvalue and newvalue. Each PropertyValue is associated with a DataChange

object; it has a processId and an operationId, indicating the global process and operation that has created the

PropertyValue, with timestamp to record the actual time of change. The object structure shown in figure 1

Figure 1: The Delta Structure of a DEGS

B. Delta-Enabled RollBack (DE-rollback)

DE-rollback[10] is performed to reverse the data changes that have been introduced by a service execution to their

before-execution images, it also used to reverse the result of a service execution even after the execution has

terminated. Figure 2 shows the execution of two processes, p1 and p2. Here p1 consist of two services op11 and op12.

Process p2 also consist of two services op21 and op22. Both processes access X and Y, with schedule shown as x1,

followed by x2 and x3, as well as y1 followed by y2. As shown in figure 2, if DE-rollback is invoked on op22, the

object delta created by op22 (y2) will be removed, and the value of Y will be resorted to the value y1.similarly DE-

rollback can be applied to op21 to reverse the value of X from x3 to x2.

Figure 2: Delta-Enabled Rollback

C. Process Dependency Graph (PDG)

PDG consist of nodes with represents process. The outgoing edge of a node px points to py if px is dependent on py.

For each PDG PDGNode is created, which represents a process pi with pId as identifier, and dependency

relationship with other nodes. A PDGNode has a backwardRecCmdList to store backward recovery commands, and

a forwardRecCmdList to store pi’s forward execution commands. A children attribute contain list of all the

processes that are dependent on pi, and parent attribute contain list of all the processes on which pi depends. The

operation isAncestorof(PDGNode,node) is used to determine if a node is a descendant of PDGNode. pirEvalResult

of type Boolean to store the evaluation result of all of the PIR instances associated with pi. The structure of

PDGNode is shown in figure 3.

ProcessId

OperationId

1 *
1 * *DeltaObject

ClassName

ObjectId

DeltaProperty

PropertyName

PropertyValue

PropertyValue

OldValue

NewValue

P1 P2

Op11 Op12 Op21 Op22

Process

x1 x2

y1

Object Deltas
x3

y2X (x0)

Y (y0)

International Journal of Latest Trends in Engineering and Technology (IJLTET)

Vol. 3 Issue 1 September 2013 2 ISSN: 2278-621X

Figure 3:-PDGNode

Figure 4 shows sample PDG containing nine concurrently executing processes identified as p1-p9. Each arrow points

to the parent of a node, indicating the process that a node depends on. A check mark indicates that the condition of a

PIR instance for a node evaluates to true meaning the node needs to be recovered according to the action of the PIR.

And a cross mark indicates that the condition of PIR instance for a node evaluates to false, meaning the node can

keep running.

Figure 4:-PDG

In PDG deltas are not lost during the recovery process. The algorithm is generated for PDG which contain all

processes that are directly or indirectly dependent on the failed process. The input to the algorithm is failed process

pi.

D. Process Interference Rule (PIR)

To recover failed process cascaded recovery of other dependent process is required. In the DeltaGrid environment,

PIR is used to determine if the cascaded recovery of dependent process is required or not. PIR is used to specify how

to handle concurrent processes that are either read or write dependent on failed process. A PIR has four elements:

event, define, condition and action. There are two events in PIR,

 1) A write dependent event. The format is ,

<writeDependentProcessName>WriteDependency(failedProcess,wdProcess).

The dependent event contain the name of the write dependent process instance (writeDependentProcessName), and

two parameters: the identifier of failed process (failedProcess) and the identifier of write dependent process

(wdProcess).

2)A read dependent event. The format is,

<readDependentProcessName>ReadDependency(failedProcess,rdProcess).

PDGNode

-pId:string

-backwardRecCmdList:Object

-forwardRecCmdList:object

-chidren:object

-parent:object

-pirEvalResult:Boolean

+isAncestorOf():Boolean

P1

P2 P3 P4

P5
P6 P7 P8 P9

International Journal of Latest Trends in Engineering and Technology (IJLTET)

Vol. 3 Issue 1 September 2013 3 ISSN: 2278-621X

The dependent event contain the name of the read dependent process instance (readDependentProcessName), and

two parameters: the identifier of failed process (failedProcess) and the identifier of read dependent process

(rdProcess).

The structure of PIR is as shown in figure 5.

 Create rule ruleName

event failureRecoveryEvent

 define [viewName as <OQL expression>]

condition [when condition]

action recovery commands

 Figure 5:-PIR Structure

E. DeltaGrid Abstract Execution Model

Figure 3.2 shows the DeltaGrid abstract execution model[8], is composed of three components: the service

composition and recovery model, the process dependency model, and process interference rule. The service

composition model defines a hierarchical service composition structure as well as the semantics of execution entities

for the handling of operation execution failure occurring at any compositional level. The process dependency model

further defines the relationships that exist among concurrently executing processes in terms of write dependencies

and potential read dependencies.

II. PROPOSED ALGORITHM

Figure 5:-DeltaGrid Abstract Execution Model

III.Proposed Alogorithms

Figure 6:DeltaGrid Abstract Execution Model

III. PARPOSED ALGORITHMS

A. Composite Group Deep Compensation Algorithm

Algorithm given in figure 4.1 invokes the deep compensation of an immediately enclosing composite group of

subgroups if the contingency of the subgroup fails. The input to the algorithm is the composite group to be deep

compensated.

public void deepCompensate(Compositegroup cgi)

{

The DeltaGrid Abstract Execution Model

Service Composition and Recovery Model Process Interference Rules

Composition Structure

Execution Semantics

Recovery Algorithm

Rule Specification

Triggering procedure

Global Execution History Interface

Global Execution History Read/Write Dependency

Process Dependency Model

International Journal of Latest Trends in Engineering and Technology (IJLTET)

Vol. 3 Issue 1 September 2013 4 ISSN: 2278-621X

 //get a list of executed critical subgroups of cgi in reverse execution order

 C=[sgik | sgik C cgi] (k=n..1)

 //iterate through every executed subgroupof cgi

 FOR EACH sgik [] C

 {

 //check if sgik is an atomic group

 CASE:

1. Sgik is an atomic group

EXECUTE post-commitRecoverAtomicGroup(sgik);

CONTINUE;

2. Sgik is a composite group:

//check if sgik has shallow compensation cgik

CASE:

2.1 sgik has cgik:

EXECUTE cgik;

//check csik execution result

CASE:

2.1.1 csgik SUCCEEDS:

CONTINUE;

2.1.2 csgik FAILS:

EXECUTE deepCompensation(sgik);

 END CASE:

2.2 sgik has no csgik:

EXECUTE deepCompensation(sgik);

CONTINUE;

 END CASE:

 END CASE:

}//END FOR;

}

B. Postcommit Recovery of an Atomic Group

The algorithm shown in figure 4.2 checks the recovery attributes of an operation and determine recovery procedure.

public Operation post-commitRecoverAtomicGroup(AtomicGroup agij)

{

 get agij’s primary operation=>opij;

 //check opij’s post-commit recoverability

 CASE:

1. opij is COMPENSATABLE:

//check if agij compensation copij

CASE:

1.1 agij has copij:

RETURN copij;

1.2 agij has copij:

//the applicability of dopij will be checked before execution

RETURN dopij;

END CASE:

2. opij is REVERSABLE:

RETURN dopij:

3. opij is DISMISSIBLE:

RETURN NULL:

 END CASE;

}

International Journal of Latest Trends in Engineering and Technology (IJLTET)

Vol. 3 Issue 1 September 2013 5 ISSN: 2278-621X

C. PDG Construction Algorithm

PDG Construction Algorithm shown in figure 3 is consisting of steps required to construct PDG.

1. Create a hashtable (nodeTable) to store the PDG.

2. Create three lists to assist in the construction process:

 2.1. root to iterate through different levels of a PDG,

 2.2. tmpRoot to temporarily store the children of processes in root, and

 2.3. dpList to temporarily store the dependent processes of a single process.

3. Add the failed process pi in root to start PDG construction.

4. For each process pi in root,

 4.1. Add every dependent process pd of pi into dpList.

 4.2. For each pd of dpList

 4.2.1. If pd already has a node in nodeTable, retrieve it. Otherwise, create a node for pd.

 4.2.2. If pd is not an ancestor of pi (no circular dependency), make pd dependent on pi and

 add pd into tmpRoot (creating the process list for the next level of the PDG).

5. After processing all elements of root, empty dpList and move processes from tmpRoot to root. If root is not

 empty, repeat step 4.

D. Multiprocess Recovery Algorithm

The algorithm shown in figure 4.4 coordinates backward recovery and forward recovery execution for the failed

process and dependent processes. The input to the algorithm is failed process. The goal of this algorithm is to

identify dependent processes and to evaluate which processes are affected using PIRs to derive proper recovery

commands for each process.

1. For each child (pc) of px,

2. For each PIR instance of pc,

 2.1 Evaluate the PIR condition

 2.2 If the PIR condition is true, further verify if px is the only parent of pc. If yes, then pc is added to

the tmpBKRecList. Otherwise, pc’s pirEvalResultis set to true and px is removed from pc’s parent

since px’s impact on pc has been processed.

Then, the recovery commands specified in the PIR action are merged to pc’s

backwardRecCmdList and forwardRecCmdList.

2.3 If the PIR condition is false, verify if px is the only parent of pc. If px is the only parent of pc, pc

is put back into the executeQ and the function processChildrenOfProcessWithFalsePIR is invoked.

This function traverses the subgraph with pc as the root, processing descendants of pc. The

function adds any descendant pd of pc back to executeQ if pd has only one parent, and removes pc

from pd’s parent if pd has multiple parents.

IV.CONCLUSION

It provides more intelligent way of detecting data dependencies to determine the affect of process failure and

recovery procedure. This research help to identify data dependencies between concurrent process in a service

composition environment with the help of delta-based dependency tracking which resolve the impact of the failure

recovery of one process on other concurrently executing processes.

V.FUTURE WORK

This research gives the recovery for concurrent processing groups we can enhance this research for parallel groups

and also it is possible to detailed analysis of looping, choice, and parallel control structure.

REFERENCES

[1] H. Schuldt, G. Alonso, C. Beeri, and H.J. Schek, “Atomicity and Isolation for Transactional Processes,” ACM Trans. Database

International Journal of Latest Trends in Engineering and Technology (IJLTET)

Vol. 3 Issue 1 September 2013 6 ISSN: 2278-621X

Systems, vol. 27, no. 1, pp. 63-116, 2002.

[2] T. Jin and S. Goschnick, “Utilizing Web Services in an Agent Based Transaction Model (ABT),” Proc. First Int’l Workshop Web
Services and Agent-Based Eng., 2003.

[3] S. Bhiri, O. Perrin, and C. Godart, “Ensuring Required Failure Atomicity of Composite Web Services,” Proc. 14th Int’l Conf. World Wide
Web, 2005.

[4] L. Blake, “Design and Implementation of Delta-Enabled Grid Services,” MS thesis, Dept. of Computer Science and Eng., Arizona State
Univ., 2005.

[5] B. Limthanmaphon and Y. Zhang, “Web Service Composition Transaction Management,” Proc. 15th Australasian Database Conf., 2004.

[6] Y. Xiao and S.D. Urban, “Using Data Dependencies to Support the Recovery of Concurrent Processes in a Service Composition
Environment,” Proc. Cooperative Information Systems Conf.(COOPIS), pp. 139-156, Nov. 2008.

[7] Y. Xiao and S.D. Urban, “Process Dependencies and Process Interference Rules for Analyzing the Impact of Failure in a Service
Composition Environment,” J. Information Science and Technology, vol. 5, no. 2, pp. 21-45, 2008.

[8] S.D. Urban, Y. Xiao, L. Blake, and S. Dietrich, “Monitoring Data Dependencies in Concurrent Process Execution through Delta-Enabled
Grid Services,” Int’l J. Web and Grid Services, vol. 5, no. 1,pp. 85-106, 2009.

[9] Y. Xiao and S.D. Urban, “The DeltaGrid Service Composition and Recovery Model,” Int’l J. Web Services Research, vol. 6, pp. 35-66,
2009.

International Journal of Latest Trends in Engineering and Technology (IJLTET)

Vol. 3 Issue 1 September 2013 7 ISSN: 2278-621X

