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Abstract - Digital signal processing is one of the core technologies, in rapidly growing application Areas, such as wireless 

communications, audio and video processing and industrial control. The number and variety of products that include 

some form of digital signal processing has grown dramatically over the last few years. DSP has become a key component, 

in many of the consumer, communications, medical and industrial products which implement the signal processing using 

microprocessors, Field Programmable Gate Arrays (FPGAs), Custom ICs etc.DSP techniques have been very successful 

because of the development of low-cost software and hardware support. For example, modems and speech recognition can 

be less expensive using DSP techniques. DSP processors are concerned primarily with real-time signal processing. Real-

time processing requires the processing to keep pace with some external event, whereas non-real-time processing has no 

such timing constrain Fast Fourier transform (FFT) has an important role in many digital signal processing (DSP) 

systems. E.g., in orthogonal frequency division multiplexing (OFMD) communication systems, FFT and inverse FFT are 

needed. Today, various FFT processors, such as pipelined or memory-based architectures, have been proposed for 

different applications.In this paper we are designing Radix-2 FFTAlgorithm and Radix-4 FFTAlgorithm of 

A system by using FFTcontroller . However, for long-size FFT processors, such as the 2048-point FFT, For the memory-

based processor design, minimizing the necessary memory size is effective for area reduction since the memory costs a 

significant part of the processor. We proposed VLSI architecture for a generalized mixed-radix (GMR) algorithm of FFT.  
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I. INTRODUCTION 

In the fields of communications, signal processing, and in electrical engineering more generally, a signal is any 

time-varying or spatial-varying quantity.In the physical world, any quantity measurable through time or over space 

can be taken as a signal. Within a complex society, any set of human information or machine data can also be taken 

as a signal. Such information or machine data (for example, the dots on a screen, the ink making up text on a paper 

page, or the words now flowing into the reader's mind) must all be part of systems existing in the physical world – 

either living or non-living.Despite the complexity of such systems, their outputs and inputs can often be represented 

as simple quantities measurable through time or across space. In the latter half of the 20th century, electrical 

engineering itself separated into several disciplines, specializing in the design and analysis of physical signals and 

systems, on the one hand, and in the functional behavior and conceptual structure of the complex human and 

machine systems, on the other. These engineering disciplines have led the way in the design, study, and 

implementation of systems that take advantage of signals as simple measurable quantities in order to facilitate the 

transmission, storage, and manipulation of information. 

In a communication system, a transmitter encodes a message into a signal, which is carried to a receiver by the 

communications channel. For example, the words "Mary had a little lamb" might be the message spoken into a 

telephone. The telephone transmitter converts the sounds into an electrical voltage signal. The signal is transmitted 

to the receiving telephone by wires; and at the receiver it is reconverted into sounds.In telephone networks, signaling, 

for example common channel signaling refers to phone number and other digital control information rather than the 

actual voice signal. 

Signals can be categorized in various ways. The most common distinction is between discrete and continuous spaces 

that the functions are defined over, for example discrete and continuous time domains. Discrete-time signals are 
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often referred to as time series in other fields. Continuous-time signals are often referred to as continuous signals 

even when the signal functions are not continuous; an example is a square-wave signal. 

A second important distinction is between discrete-valued and continuous-valued. Digital signals are sometimes 

defined as discrete-valued sequences of quantified values, that may or may not be derived from an underlying 

continuous-valued physical process. In other contexts, digital signals are defined as the continuous-time waveform 

signals in a digital system, representing a bit-stream. In the first case, a signal that is generated by means of a digital 

modulation method is considered as converted to an analog signal, while it is considered as a digital signal in the 

second case. 

The Fourier transform (FT) has been widely used in circuit analysis and synthesis, from filter design to signal 

processing, image reconstruction, stochastic modeling to non-destructive measurements. The FT has also been 

widely used in electromagnetic from antenna theory to radio wave propagation modeling, radar cross-section 

prediction to multi-sensor system  design. For example, the split-step parabolic equation method (which is nothing 

but the beam propagation method in optics) has been in use more than decades and is based on sequential FT 

operations between the spatial and wave number domains. Two and three dimensional propagation problems with 

non-flat realistic terrain profiles and inhomogeneous atmospheric variations above have been solved with this 

method successfully. 

II. DESCRIPTION OF FOURIER SERIES

According to the theory developed by Fourier, any periodic function F(t), with period T, may be represented by an 

infinite series of the form  

Where the coefficients a0, an, and bn for a given periodic function F(t) are calculated by the formulas  

It should be noted that the first coefficient a0 is twice the average of the function F(t) over one period. This series is 

called the Fourier series and the coefficients are called the Fourier coefficients.  

The Fourier series expansion of a continuous and periodic waveform provides a means of expanding a function into 

its major sine / cosine or complex exponential terms. These individual terms represent various frequency 

components which make up the original waveform.  

A line graph of the amplitudes of the Fourier series components can be drawn as a function of frequency. Such a 

graph is called a spectrum or frequency spectrum.  

The periodic time T defines completely which spectral components occur in the spectrum as f0 = 1 / T. The 

component f0 is called the fundamental frequency or first harmonic. All the higher components are multiples of f0

and are called the higher harmonics. The smallest spacing that can occur between frequency components in the 

spectrum is f0 = 1 / T.  

By using Euler's formula to derive complex expressions for sin(t) and cos(t), and substituting these into the Fourier 

series it can be shown that the complex form of the Fourier series is  

Where the coefficients cn are the complex Fourier coefficients. 

Description of Fourier transforms:
The transformation from the time domain to the frequency domain (and back again) is based on the Fourier 

transform and its inverse, which are defined as 
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dtetsS tfj2)()(   (1a) 

dfefSts tfj2)()(  (1b) 

The FT is valid for both periodic and non-periodic time signals that satisfy certain minimum conditions. Almost all 

real world signals easily satisfy these requirements (It should be noted that the Fourier series is a special case of the 

FT). Mathematically, 

 FT is defined for continuous time signals.In order to do frequency analysis, the time signal must be observed 

infinitely.  

To compute the Fourier transform numerically on a computer, discrimination plus numerical integration are required. 

This is an approximation of the true (i.e., mathematical), analytically-defined FT in a synthetic (digital) environment, 

and is called discrete Fourier transformation (DFT). There are three difficulties with the numerical computation of 

the FT: 

• Discrimination (introduces periodicity in both the time and the frequency domains) 

Numerical integration (introduces numerical error, approximation) 

Finite time duration (introduces maximum frequency and resolution limitations 

The DFT of a continuous time signal sampled over the period of T, with a sampling rate of t can be given 

as
1
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Where f=1/T, and, is valid at frequencies up to fmax = 1/(2 t). Table 2 lists a simple Mat lab m-file that computes 

(5) for a time record s(t) of two sinusoids whose frequencies and amplitudes are user-specified. The record length 

and sampling time interval are also supplied by the user and DFT of this record is calculated inside a simple 

integration loop 

Basic Discrimination DFT and FFT Requirements: 

Mathematically defined Fourier transformation can be used to calculate the FT of a function at any frequency. There 

is no maximum frequency, or frequency resolution limit, since these are numerical FT restrictions. The maximum 

frequency in DFT or FFT depends on the sampling interval, and the frequency resolution is determined by the signal 

record length. That is N samples of a time signal recorded during a finite duration of T with a sampling period of t

(N=T/ t) can be transformed into N samples in the frequency domain between –fmax and +fmax according 

to
t

f
2

1
max ,

T
f

1
.

Since sampling interval and signal record lengths are finite in numerical computations in the computers maximum 

frequency and the resolution are also finite. This means 

any frequency component cf beyond maxf  can not be observed in its actual frequency; instead it enters from left 

because of rotational symmetry and periodicity and appears at Dffmax where maxfff cD .

Similarly, any frequency component cf beyond maxf  can not be observed in its actual frequency; instead it 

enters from left because of rotational symmetry and periodicity and appears at Dffmax where maxfff cD .

It should be noted that, the Mat lab code in Table 2 directly integrates (4) numerically, so any number of frequency 

samples ( fn ) can be used to plot a frequency spectrum. Unfortunately, (7) still holds for the DFT. In other 

words, for example if one wants to discriminate two sinusoids with 50Hz and 55Hz  in the frequency domain the 

frequency resolution f  must be much less than their difference (5Hz).   

III . MULTIPIER 
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                        Data2 

       

Fig 1. Block diagram of the multiplier 

As shown in fig 1 the multiplier module, consists of Clk, Reset, Data1, Data2 are the inputs and Result is the output. 

The Data1 and Data2 input contain the 8-bits of information .The Result contains the 16-bits of information. This 

module is synchronous module with Positive Clk edge. If the reset is high the Result output should be zero else the 

multiplication operation is performed each and every clock edge of the Clk. 

COMPLEX MULTIPLER: 

     As shown I       

Fig 2. Block diagram of the Complex multiplier 

as shown in fig.2 the Clk,Reset, Data1_real[8:0], Data1_img[8:0], Data2_real[8:0], Data2_Img[8:0] are the inputs 

and Real_Data[8:0] and Img_Data[8:0] are the outputs. The operation is perform on every positive Clk edge. The 

Reset is active low Reset. The Real Data [8:0] and Img_Data [8:0] are calculated by using the this following 

equations  

Real_Data= Data1_real[8:0]X Data2_real[8:0]- Data1_Img[8:0] X Data2_Img[8:0];--[1] 

     Img_Data= Data1_real[8:0]X Data2_Img[8:0]- Data2_Real[8:0] X Data1_Img[8:0];--[2] 

Clk

       Reset

Data2          Data1   Result

Multiplier 

Data1_Real[8:0]

Data1_Im[8:0] 

Data2_Im[8:0] 

Data2 Real[8:0]

           Clk  

       Reset  

Real_Data[8:0]

Img_Data[8:0] 
Complex 

Multiplier 
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SIGNED ADDER: 

                                                
                                                     Fig 3. Block diagram of the Signed Adder 

As shown in fig 3, the sign adder contains the A, B are the inputs with the 9-bits of information. The Result is the 

output of the signed adder with 9-bits of information.  The operation is depend on the MSB bits of the A and B . If A 

and B MSB bits are same the operation is a simple adder operation. If MSB bit of the A is not equal to B, then 

compare the magnitude of the A and B, the Result magnitude is equal to the small number is subtracted from the big 

number and sign bit of the Result is equal to the big number sign bit.   

COMPLEX BUTTERFLY MODULE :As shown in the complex butter module consists AR[8:0], AI[8:0], 

BR[8:0], BI[8:0], WR[8:0], WI[8:0] are the inputs and OUTPUTR[8:0] and OUTPUTI[8:0] are the two outputs. R 

stands for the real part of the sample and I stand for the imaginary part of the samples.

First compute the complex multiplication between the BR [8:0], BI [8:0], WR [8:0], WI [8:0] then the 

result is real and imaginary parts. These outputs are add/subtract from the AR [8:0], AI [8:0] respectively and 

getting the OUTPUTR [8:0] and OUTPUT I[8:0]. 

                                

                                       Fig 4. Block diagram of the Complex Butterfly Unit 

A [8:0] 

B [8:0] 

SIGNED

ADDER 

              R  esult             [8:0] 

AR [8:0] 

AI [8:0] 

BR [8:0] 

BI [8:0] 

    WR [8:0] 

WI [8:0] 

COMPLEX 

BUTTERFLY 

UNIT 

OUTPUTR [8:0] 

OUTPUTRI [8:0] 
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 LUT: 

                                

Fig 5. Block diagram of the LUT 

As shown in figure5 the Clk,Reset and Control [1:0] are the inputs and twiddle-factor[8:0] is the output. This is a 

synchronous LUT. It performs its operation on every positive edge of the Clk. The Reset is the active low value.The 

control [1:0] come from the main controller .It produce all necessary control signals for different operations. The 

control [1:0] has the value of “00” the LUT provides the twiddle factors necessary for the first stage of the Radix_2 

FFT calculation. In the same manner the LUT produce the different twiddle factors for the different stages 

depending the value of the controller like “01”,”10” and “11”. 

IV . RADIX_2 FFT CALCULATOR MODULE

             

             

             

             

             

             

             

             

             

            

Fig 6. Block diagram of the Radix-2FET-16 CalculatorAs shown in figure the Clk, Reset, 16-samples and the 

twiddle factors are the inputs and 16-outputs samples are the outputs . Each and every sample is represented by 

using the 9-bits of information. The 8-bits are for the information and 1-bit is used for the sign bit representation.The 

number of samples is 16, since the four stages of complex butterfly multiplications are required. For the each and 

every stage requires the different twiddle factors .The required twiddle factors are delivered by using  LUT table. 

After the fourth stage calculation we can get the 16-samples outputs with real and imaginary parts.  

WI [8:0] 

RADIX-2 FFT 
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    LUT 
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Control [1:0] 
Twiddle-factor [8:0] 
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  16-samples  .
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.
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LUT   

.

.

.
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FFT -16 

CALCULATOR 
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V. RADIX-4 COMPLEX BUTTERFLY MODULE :

Fig 7. Block diagram of the Radix-4 Complex Butterfly\ 

As shown in fig .7. AR [8:0], AI [8:0], BR [8:0], BI [8:0], CR [8:0], CI [8:0], DR [8:0], DI [8:0], WAR [8:0], WAI 

[8:0], WBR [8:0], WBI [8:0], WCR [8:0], WCI [8:0], WDR [8:0], WDI [8:0] are the inputs of 9-bits and A_REAL 

[8:0], A_IMG [8:0], B_REAL [8:0], B_IMG [8:0], C_REAL [8:0], C_IMG [8:0], D_REAL [8:0], D_IMG [8:0] are 

the outputs of 9-bits.

The first operation in this module is calculate the complex multiplications of respective twiddle factors like AR [8:0], 

AI [8:0] with WAR [8:0], WAI [8:0]. In the second operation we can calculate the A_REAL [8:0], A_IMG [8:0], 

B_REAL [8:0], B_IMG [8:0],  

C_REAL [8:0], C_IMG [8:0], D_REAL [8:0], D_IMG [8:0] by using the following equations 

A_REAL =ar+(crxwr-cixwi)+(brwr-biwi)+drwr-diwi)       -------------------------  1. 

A_IMG=ai+(crwi+ciwr)+(brwi+biwr)+(crwi+ciwr)+(drwi+diwr) --------------------------  2. 

B_REAL =ar-(crwr-ciwi)+(brwi+biwr)-(drwi+diwr)         ------------------------------------ 3. 

B_REAL =ai-(crwi+ciwr)-(brwr-biwi)+(drwr-diwi)         ------------------------------------  4. 

C_REAL =ar+(crwr-ciwi)-(brwr-biwi)-(drwr-diwi)          ------------------------------------  5. 

C_IMG=ai+(crwr+ciwi)-(brwi+biwr)-(drwi+diwr)           ------------------------------------ 6. 

D_REAL =ar-(crwr-ciwi)-(brwi+biwr)+(drwi+diwr)       ------------------------------------  7. 

D_IMG=ai-(crwi+ciwr)+(brwr-biwi)-(drwr-diwi)           ------------------------------------   8. 
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 BR [8:0]

BI [8:0]

CI [8:0] 

DR [8:0] 

CR [8:0]
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A_REAL [8:0] 

A_IMG [8:0] 
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 B_IMG [8:0] 
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 C_IMG [8:0] 

D_REAL [8:0] 

 D_IMG [8:0] 
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Fig 8. Block diagram of the Radix-4 FET-16 Calculator 

As shown in figure 8.the Clk, Reset, 16-samples and the twiddle factors are the inputs and 16-output samples are 

outputs. Each and every sample is represented by using the 9-bits of information. The 8-bits are for the information 

and 1-bit is used for  

the sign bit representation.The number of samples is 16, since the two stages of complex radix-4 butterfly 

multiplications are required. For the each and every stage requires the different twiddle factors .The required twiddle 

factors are delivered by using  LUT table. After the fourth stage calculation we can get the 16-samples outputs with 

real and imaginary parts.  

FFTController:

Fig 9. Block diagram of the Controller

As shown in fig9. Clk, Reset and cntrl [1:0] are the inputs and Radix_2_ena , Radix_4_ena are the outputs. Every 

positive Clk edge the Radix_2_ena, Radix_4_ena are enabled or disabled depending the cntrl [1:0] bits. If cntrl value 

is “00” Radix_2_ena, Radix_4_ena both are disabled, if “01” Radix_2_ena is enable and Radix_4_ena is disable, if 

“10” Radix_2_ena is disable and Radix_4_ena is enable, if “11” both are activated. 
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VI. TOP MODULE:

Fig 10. Block diagram of the Proposed Architecture [Top Module] 

As shown in fig, Clk, Reset, cntrl [1:0] and 16_input samples are inputs. Each and every sample is represented as a 

real part of 9-bits and 9-bits of imaginary bits. This is synchronized design with active low Reset value.  Radix-2 of  

16-output samples and Radix_4 of 16-outputs samples are the outputs. Whenever the Reset is high the both outputs 

should be in zero value. Depending on the cntrl value we can get either Radix_2 output samples or Radix_4 output 

samples and both samples are active state when cntrl input value is “11”. 

VII. CONCULSION 

This architecture is designed by using verilog language .We have used here model sim (Questa Sim 6.2b) tool for 

the compilation purpose. By using this project we can able to implement the VLSI architecture for the mixed 

radix.Mostly we are using FFT in OFDMA, DSP, Wireless communication .It has wide spread of applications in 
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mobile communication. It increases the speed of operation.So by using this Mixed Radix FFT we can able to 

achieve lot of applications. We proposed VLSI architecture for a generalized mixed-radix (GMR) algorithm of FFT. 

                 

VIII. FUTURE SCOPE 

This is a novel architecture for any Radix-N of FFT calculation method. It is scalable architecture for any number 

samples like 32,64,128,256,1024also.This is suitable for different OFDM application with little bit of hardware 

modification. By using this project we can drastically reduce the program execution time.      We  can  use  it in 

power spectrum density, speed spectrum analysis.In the future by increasing the size of the inputs of element we can 

able to    increase size of the algorithms .It leads to achieve number of applications in the future. It will  become one 

of the best solutions for mixed radix algorithms. 
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