
2

Reducing Computational Time using Radix-4

in 2’s Complement Rectangular Multipliers

Y. Latha

Post Graduate Scholar , Indur institute of Engineering & Technology, Siddipet

K.Padmavathi

Associate. Professor , Indur institute of Engineering & Technology, Siddipet

Abstract - This paper presents a method to spped up Booth encoded multipliers by cing the size of Partial product

array using Radix – 4 Modified Booth encoded multiplier . This method is used for higher radices encoding for any

size of mxn multiplications This reduction may allow for a faster compression of the partial product array and

regular layouts. This technique is of particular interest in all multiplier designs, but especially in short bit-width

two’s complement multipliers for high-performance embedded cores. With the extra hardware of a (short) 3-bit

addition, and the simpler generation of the first partial product row, we have been able to achieve a delay for the

proposed scheme within the bound of the delay of a standard partial product row generation. We evaluated the

proposed approach by comparison with some other possible solutions; the results based on a rough theoretical

analysis and on logic synthesis showed its efficiency in terms of both area and delay.

Keywords: Multiplication, Radix-4, Modified Booth Encoding, partial product array.

I. INTRODUCTION

In signal processing applications performance strongly depends on the effectiveness of the hardware used for

computing multiplications. The high interest in this field is witnessed by the large amount of algorithm and

implementations of the multiplication operations. In this short bit width (8-16 bits) two’s complement

multipliers with single-cycle throughput and latency have emerged to be important building blocks for high

performance embedded processors and DSP execution cores. Applications for short bit-width multipliers is the

design of SIMD units supporting different data formats. The basic algorithm for multiplication is based

three main phases: 1) partial product (PP) genera- tion, 2) PP reduction, and 3) final (carry-

propagated) addition. During PP generation, a set of rows is generated where each one is the result

of the product of one bit of the multiplier by the multiplicand.

Modified Booth Encoding (MBE) [5] is a technique that has been introduced to reduce the number

of PP rows, still keeping the generation process of each row both simple and fast enough. One of

the most commonly used schemes is radix-4 MBE, for a number of reasons, the most important

being that it allows for the reduction of the size of the partial product array by almost half, and it is very

simple to generate the multiples of the multiplicand. More specifically, the classic two’s

complement nxn bit multiplier using the radix- 4 MBE scheme, generates a PP array with a maximum

height of [n/2]+1 rows, each row before the last one being one of the following possible values: all zeros,

±X; ±2X.

The PP reduction is the process of adding all PP rows by using a compression tree [6], [7]. Since

the knowledge of intermediate addition values is not important, the outcome of this phase is a result

represented in redundant carry save form i.e., as two rows, which allows for much faster implementations. The

final addition has the task to sum these two rows and to present the final result in non redundant form i.e., as a

single row.

Our aim is to produce a PP array of maximum height of [n/2] to be then reduced by the compressor tree stage.

This is the common case of values n which are power of 2, can lead to n implementation where the delay of the

compressor tree is reduced by one XOR2 gate.

II. MODIFIED BOOTH ENCODING (RADIX-4)

International Journal of Latest Trends in Engineering and Technology (IJLTET)

Vol. 2 Issue 3 May 2013 275 ISSN: 2278-621X

2

Table 1 MO D I FI E D BO OT H EN C O D I N G (RA D I X -4)

The method is to compute the product of a multiplicand X and a multiplier Y, is to produce the partial product

array by generating one row for each bit of the multiplier Y. This methodology produces n rows, where n is the

size of the multiplier. In general, a radix-B =2b MBE leads to a reduction of the number of rows to

about [n/b] while, on the other hand, it introduces the need to generate all the multiples of the

multiplicand X, at least from - B/2 x X to B/2 x X. Radix-4 is easy to create the multiples of the

multiplicand 0; ±X; ±2X. ±2X can be simply obtained by single left shifting of the corresponding

terms ±X.

(a) MBE signals generation (b) Partial product generation

Fig. 1. Gate level diagram for partial product generation using MBE (adapted from [8]).

Radix-4 MBE scheme consists of scanning the multiplier operand with a three-bit window and a

stride of two bits . For each group of three bits (y
2i+1

, y
2i,

y
2i-1

), only one partial product row is

generated according to the encoding in Table 1. For each partial product row, Fig. 1a produces

the one, two, and neg signals. These signals are then exploited by the logic in Fig. 1b, along with the

appropriate bits of the multiplicand, in order to generate the whole partial product array. The use of

radix-4 MBE allows for the (theoretical) reduction of the PP rows to [n/2], with the possibility for each

row to host a multiple of yi x X, with y
i {0; ±1; ±2}

To generate the positive terms 0, X, and 2X at least through a left shift of X, some attention is

required to generate the terms -X and -2X which, as observed in Table 1, can arise from three

configurations of the y
2i+1

, y
2i

, and y bits. To avoid computing negative encodings, i.e., -X and

- 2X, the two’s complement of the multiplicand is generally used. The use of two’s complement

requires extension of the sign to the leftmost part of each partial product row, with the

consequence of an extra area overhead. Thus, a number of strategies for preventing sign extension

have been developed. For 2’s complement it requires a neg signal to be added in the LSB position

of each partial product row. For nxn multiplier, only [n/2] partial products are generated, the maximum

height of the partial product array is [n/2]+1.

When 4-to-2 compressors are used the reduction of the extra row may require an additional delay of two

XOR2 gates. By properly connecting partial product rows and using a Wallace reduction tree , the extra

delay can be further reduced to one XOR2. However, the reduction still requires additional hardware,

roughly a row of n half adders. This issue is of special interest when n is a power of 2, which is by far a very

common case, and the multiplier’s critical path has to fit within the clock period of a high performance

processor. For instance, in the design presented in [2], for n = 16 the maximum column height of the

partial product array is 9, with an equivalent delay for the reduction of six XOR2 gates. For a maximum

International Journal of Latest Trends in Engineering and Technology (IJLTET)

Vol. 2 Issue 3 May 2013 276 ISSN: 2278-621X

height of the partial product array of 8, the delay of the reduction tree would be reduced by one XOR2

gate. Alternatively, with a maximum height of 8, it would be possible to use 4 to 2 adders, with a delay of the

reduction tree of six XOR2 gates, but with a very regular layout.

III. RELATED WORK

This approach is based on computing the two’s complement of the last partial product, thus

eliminating the need for the last neg signal, in a logarithmic time complexity. A special tree structure

is used in order to produce the two’s complement by decoding the MBE signals through a 3-5

decoder (Fig. 2a). Finally, a row of 4-1 multiplexers with implicit zero output1 is used (Fig. 2b) to

produce the last partial product row directly in two’s complement, without the need for the neg

signal. The goal is to produce the two’s complement in parallel with the computation of the partial

products of the other rows with maximum overlap. In such a case, it is expected to have no or a

small time penalization in the critical path. An example of the partial product array produced

using the above method is depicted in Fig. 2

Fig.2. Gate level diagram for the generation of two’s complement partial product rows a) 3-5 decoder b) 4-1 multiplexer

IV. BASIC IDEA

4.1 Square Multipliers

The high level description of the proposed idea is as follows:

1. generation of most significant three bit weights of the first row, plus addition of the last neg bit.

possible implementations can use a replication of three times the circuit of Fig. 9 (each

for the three most significant bits of the first row), cascaded by the circuit of Fig. 7 to add

the neg signal;

2. parallel generation of the other bits of the first row: possible implementations can use

instances of the circuitry depicted in Fig. 8, for each bit of the first row, except for the

three most significant;

3. parallel generation of the bits of the other rows: possible implementations can use the

circuitry of Fig. 1, replicated for each bit of the other rows.

All items 1 to 3 are independent, and therefore can be executed in parallel. Clearly if, as

assumed and expected, item 1 is not the bottleneck (i.e., the critical path), then the implementation

of the proposed idea has reached the goal of not introducing time penalties.

International Journal of Latest Trends in Engineering and Technology (IJLTET)

Vol. 2 Issue 3 May 2013 277 ISSN: 2278-621X

Fig. 3. Gate-level diagram for first row partial product generation. (a) MBE signals generation. (b) Partial product
Generation.

Fig. 4. Combined MBE signals and partial product generation for the first row (improved for speed).

Fig. 5. Partial product array by applying the two’s complement computation method in [7] to the last row.

(a) Basic idea

International Journal of Latest Trends in Engineering and Technology (IJLTET)

Vol. 2 Issue 3 May 2013 278 ISSN: 2278-621X

(b) Resulting array

Fig. 6. Partial product array after adding the last neg bit to the first row.

Implementation Description Motivation

Standard multiplier (Any

row)

Standard implementation of the
MBE: signals one, two, and neg
generated first, and then used to
produce the par- tial product array
(Fig. 1).

The delay to generate a generic partial
product row (other than the first one) in
a standard n × n multiplier represents
the upper bound for any design aimed at
removing the last neg signal

Standard multiplier (First
row)

Revisited implementation of the
MBE for the first row: logic for the
generation of the partial product
row is simplified as the y 1 bit is
always equal to zero

The delay to produce the first row
constitutes the lower bound for any
scheme trying to get rid of the MBE
negative encoding by incorporating its
effect in the shortest path (i.e., in the
first row, as in the proposed method).

Proposed method
Generation of the first partial
product row and fast 3-bit carry
propagate addition

The aim is to reduce the number of
partial product rows from [n/2] + 1 to
[n/2] thus getting rid of the effect of
MBE negative encoding. By having
fewer partial product rows, the next
reduction hardware can be smaller in
size and faster in speed. The delay will
be higher than the one of the first row
for a standard multiplier, but it should be
lower than any of the other PP rows,
thus not inducing any time penalty.

Two’s complement Direct computation of the last
partial product row in two’s
complement per- formed in parallel
to the production of the partial
products of the other rows

Similarily as the proposed method,
also this scheme avoids the extra
partial product row, and its delay has
to be within the delay requirements of
the other PP rows. The above goal is
achieved by replacing partial product
generation on the last row with partial
product selection of the multiplicand’s
two’s comple- ment, thus eliminating the
need for the last neg signal. With
respect to similar techniques

Table 2 DE S I G N S F O R T H E GE N E R AT I O N O F T H E PA RT I A L PRO D U CT ROW S CO N S I D E

R E D I N T H E E VA L UATION

4.2 Rectangular Multipliers:

• m × n rectangular multiplier;

• higher radix Modified Booth Encoding (e.g. radix-8);

• multipliers with fused accumulation.

With no loss of generality we assume m n, i.e. m = n + m0 with m0 0, since it leads to the

smaller number of rows: for simplicity and also with no loss of generality, in the following we assume that both

m and n are even. Now, we have seen in Fig. 6(a) that for m0 = 0, then the last neg bit, i.e.

negn/2 1 belongs to the same column as the first row partial product ppn 2,0 . We observe that, the

first partial product row has bits up to ppm,0 , and therefore, in order to include in the first row also

the contribution of negn/2 1 , due to the particular nature of operands it is nec e s s a r y t o p e r f o r m

a (m0 + 3)-bit carry propagation (i.e., a (m0 + 3)-bit addition) in the sum qqm+1,0 qqm+1,0

qqm,0 . . . qqn 2,0 = 0 0 ppm,0 . . . ppn 2,0 + 0 1 1 . . . 0 negn/2 1 . Therefore, for rectangular

International Journal of Latest Trends in Engineering and Technology (IJLTET)

Vol. 2 Issue 3 May 2013 279 ISSN: 2278-621X

2

2

n

multipliers, the proposed approach can be applied with the cost of a (m0 + 3)-bit addition.

Although we have explicitly focused our attention to radix-4 MBE, the proposed method can be easily

extended to any radix-B MBE. It is easily observed, by redrawing the equivalent of Fig. 6(a) for another

radix-B MBE, that the neg signal of the last row can be included in the first row by using a simple 3-bit

adder for a n × n multiplier and by using a (m0 + 3)-bit adder for the more general case of a (n + m0) × n

adder. The use of a combined multiplier with accumulation is also common. In this case, the proposed

approach can also be used and does not loose the benefit to reduce by one the number of rows to be added.

Although this reduction does not necessarily lead to a reduction in the computation time for some values of n,

it still remains interesting and useful since it is very reasonable to expect some savings and more regularity in

the compression tree. We have not evaluated such potential reductions, because their impact could be

strongly dependent on the value of n and on the strategy which has been identified to design the

compression tree.

V. CONCLUSIONS

Two’s complement n × n bit multipliers using radix-4 Modified Booth Encoding produce [n/2] partial

products but due the sign handling, the partial product array has a maximum height of [n/2]+1. We

presented a scheme that produces a partial product array with a maximum height of [n/2], without

introducing extra delay in the partial product generation stage for m x n bit multipliers. With the extra

hardware of a (short) 3-bit addition, and the simpler generation of the first partial product, we have been

allowed to achieve a delay for the proposed scheme within the bound of the delay of a standard partial

product generation.

The outcome of the above is that the reduction of the maximum height of the partial product array by

one unit, may simplify the partial product reduction tree, in terms of delay and regularity of the layout.

This is of special interest for all multipliers but especially for short bit-width multipliers for high

performance embedded cores, where short but fast bit-width multiplications could be common operations.

REFERENCES

[1] M. D. Ercegovac and T. Lang, Digital Arithmetic. Los Altos, CA, USA: Morgan Kaufmann Publishers, 2003.

[2] S. K. Hsu, S. K. Mathew, M. A. Anders, B. R. Zeydel, V. G. Ok- lobdzija, R. K. Krishnamurthy, and S. Y. Borkar, “A 110gops/w

16-bit multiplier and reconfigurable pla loop in 90-nm cmos,” IEEE Journal of Solid State Circuits, vol. 41, pp. 256–264, Jan.

2006.

[3] M. S. Schmookler, M. Putrino, A. Mather, J. Tyler, H. V. Nguyen, C. Roth, M. Sharma, M. N. Pham, and J. Lent, “A low-power,

high-speed implementation of a powerpc(tm) microprocessor vector extension,” Proceedings of the 14th IEEE Symposium on

Computer Arithmetic, p. 12, 1999.

[4] A. D. Booth, “A signed multiplication technique,” Quarterly J. Mech. Appl. Math., vol. 4, 1951.

[5] L. Dadda, “Some schemes for parallel multipliers,” Alta Fre- quenza, vol. 34, May 1965.

[6] O. L. MacSorley, “High speed arithmetic in binary computers,” Proceedings IRE, vol. 49, pp. 67–91, Jan. 1961.

[7] J.-Y. Kang and J.-L. Gaudiot, “A simple high-speed multiplier design,” IEEE Transactions on Computers, vol. 55, no. 10, pp.

1253–1258, Oct. 2006.

[8] “A fast and well-structured multiplier,” Proceedings of Euromicro Symposium on Digital System Design, pp. 508– 515, Sept.

2004.

[9] E. M. Schwarz, R. M. A. III, and L. J. Sigal, “A radix-8 cmos s/390 multiplier,” Proceedings of the 13th IEEE Symposium on

Computer Arithmetic, p. 2, 1997.

[10] F. Lamberti, N. Andrikos, E. Antelo, and P. Montuschi, “Speeding-Up Booth Encoded Multipliers by Reducing

the Size of Partial Product Array,” internal report, http://arith.polito.it/ ir_mbe.pdf, pp. 1-14, 2009.

[11] F. Lamberti, N. Andrikos, E. Antelo, and P. Montuschi, “Reducing the computation time in (Short-bit width)

Two’s Complement Multipliers

International Journal of Latest Trends in Engineering and Technology (IJLTET)

Vol. 2 Issue 3 May 2013 280 ISSN: 2278-621X

