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Abstract - This paper presents a method to spped up Booth encoded multipliers by cing the size of Partial product 

array using Radix – 4 Modified Booth encoded multiplier . This method is used for higher radices encoding for any 

size of mxn multiplications This reduction may allow for a faster  compression of the partial product  array and 

regular layouts.  This technique is of particular interest  in all multiplier designs, but especially in short bit-width 

two’s complement multipliers for high-performance embedded cores. With the extra hardware of a (short) 3-bit 

addition, and the simpler generation of the first partial product row, we have been able to achieve a delay for the 

proposed scheme within the bound of the delay of a standard partial product row generation.  We evaluated the 

proposed approach by comparison with some other possible solutions;  the results based on a rough theoretical 

analysis and on logic synthesis showed its efficiency in terms  of both area and  delay. 
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I. INTRODUCTION 

In signal processing applications performance strongly depends on the effectiveness of the hardware used for 

computing multiplications. The high interest in this field is witnessed by the large amount of algorithm and 

implementations of the multiplication operations. In this short bit width (8-16 bits) two’s complement 

multipliers with single-cycle throughput and latency have emerged to be important building blocks for high 

performance embedded processors and DSP execution cores. Applications for short bit-width multipliers is the 

design of SIMD units supporting different data formats. The  basic  algorithm for  multiplication is  based  

three  main  phases:  1) partial product (PP) genera-  tion,   2)  PP  reduction,  and   3)  final (carry-

propagated) addition. During PP generation, a set of rows  is generated where each one is the result  

of the product of one bit of the multiplier by the multiplicand.  

Modified Booth Encoding (MBE) [5] is a technique that has been  introduced to  reduce the  number 

of PP rows, still keeping the generation process  of each row both simple  and fast  enough. One  of 

the most commonly used schemes is radix-4  MBE, for a number of reasons, the  most  important 

being that it allows  for the reduction of the size of the partial product array by almost half, and it is very 

simple to generate the multiples  of  the  multiplicand. More  specifically,   the classic two’s

complement nxn bit multiplier using the radix- 4 MBE scheme, generates a PP array with a maximum

height  of [n/2]+1 rows, each row before the last one being one of the following possible  values:  all zeros, 

±X;  ±2X.

The PP reduction is the process  of adding all PP rows by using  a compression tree  [6], [7]. Since  

the knowledge of intermediate addition values  is not important, the outcome of this phase is a result 

represented in redundant carry save form i.e., as two rows, which allows for much faster implementations. The 

final addition has the task to sum these two rows and to present the final result in non redundant form i.e., as a 

single row. 

Our aim is to produce a PP array of maximum height of [n/2] to be then reduced by the compressor tree stage. 

This is the common case of values n which are power of 2, can lead to n implementation where the delay of the 

compressor tree is reduced by one XOR2 gate. 

II. MODIFIED BOOTH ENCODING (RADIX-4) 
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Table 1 MO D I FI E D BO OT H EN C O D I N G (RA D I X -4)

The method is to compute the product of a multiplicand X and a multiplier Y, is to produce the partial product 

array by generating one row for each bit of the multiplier Y. This methodology produces n rows, where n is the 

size of the multiplier. In general, a radix-B =2b MBE leads  to a reduction of the number of rows  to 

about  [n/b] while,  on the other hand, it introduces the  need   to  generate all  the multiples of  the 

multiplicand X, at  least  from     - B/2 x X to  B/2 x X.  Radix-4 is easy  to  create  the  multiples of the 

multiplicand 0; ±X; ±2X. ±2X can be simply  obtained by single  left shifting of the  corresponding 

terms ±X.   

    

(a)  MBE signals generation   (b) Partial product generation

Fig. 1.   Gate level diagram for partial product generation using MBE (adapted from [8]). 

Radix-4  MBE scheme  consists  of scanning the multiplier operand with  a three-bit window and  a

stride of two  bits .  For each group of three  bits (y
2i+1

, y
2i, 

y
2i-1

), only one  partial   product  row is

generated  according  to  the encoding  in  Table  1.  For each  partial product row, Fig. 1a produces 

the one, two, and  neg signals.  These signals are  then  exploited by  the  logic  in  Fig. 1b, along  with  the 

appropriate bits of the multiplicand, in order  to generate the whole  partial   product   array. The use of 

radix-4  MBE allows  for the (theoretical) reduction of the PP rows to [n/2], with the possibility for each  

row  to host  a multiple  of yi x X, with y
i  {0; ±1; ±2}  

To generate the positive terms  0, X, and 2X at least through a left shift of X, some  attention is

required to generate the  terms -X  and -2X  which,  as  observed in  Table  1, can  arise  from three 

configurations of  the  y
2i+1

, y
2i

,  and   y bits.  To  avoid  computing negative encodings, i.e., -X and   

- 2X, the two’s complement of the  multiplicand is generally used. The  use  of two’s  complement 

requires extension of the sign  to the  leftmost  part  of each partial product row, with  the 

consequence of an extra  area overhead. Thus,  a number of strategies for preventing sign extension 

have been developed. For 2’s complement it requires a neg signal to be added in the LSB position 

of each partial product row. For nxn  multiplier, only  [n/2] partial products are  generated, the maximum 

height of the partial product array is [n/2]+1. 

When  4-to-2  compressors  are  used the  reduction of the extra row may require an additional  delay of two 

XOR2 gates. By properly connecting  partial product rows and using a Wallace reduction tree , the extra 

delay can be further reduced to one  XOR2. However, the reduction still requires additional hardware, 

roughly a row of n half adders. This issue is of special interest when n is a power of 2, which is by far a very 

common case, and the multiplier’s critical path has to fit within the clock  period of a high performance 

processor. For instance, in the design presented in [2], for n = 16  the  maximum  column height of the 

partial product array is 9, with an equivalent delay for the reduction of six XOR2  gates. For a maximum 
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height of the partial  product array of 8, the delay of the reduction tree  would be reduced by one XOR2 

gate. Alternatively, with a maximum height of 8, it would be possible to use 4 to 2 adders, with a delay of the 

reduction tree of six XOR2 gates, but with a very regular layout. 

III. RELATED WORK 

This approach is based  on computing the two’s complement of the last partial product, thus

eliminating the need  for the last neg signal,  in a logarithmic time  complexity. A special tree  structure    

is  used   in  order   to  produce the two’s complement by decoding the MBE signals through a 3-5 

decoder (Fig. 2a). Finally,  a row  of 4-1  multiplexers with  implicit  zero  output1 is used  (Fig. 2b) to 

produce the last   partial  product  row   directly in  two’s   complement, without the need  for the neg 

signal. The goal is to produce the  two’s  complement in parallel  with  the  computation of the   partial

products  of the  other   rows   with   maximum overlap. In such  a case, it is expected to have  no or a 

small time penalization in the critical path.   An   example  of  the   partial   product   array  produced 

using  the above  method is depicted in Fig. 2  

Fig.2. Gate level diagram for the generation of two’s complement partial product rows a) 3-5 decoder b) 4-1 multiplexer 

IV. BASIC  IDEA 

4.1 Square Multipliers 

The  high  level  description  of  the  proposed  idea  is  as follows: 

1. generation of most significant three bit weights of the first row, plus addition of the last neg  bit.  

possible   implementations can  use  a  replication  of three  times  the  circuit  of Fig. 9 (each  

for the  three most  significant bits  of the  first  row), cascaded by the circuit  of Fig. 7 to add  

the neg signal;

2. parallel generation of the other  bits of the first row: possible implementations can  use  

instances  of  the circuitry depicted in Fig. 8, for each  bit of  the  first row,  except  for the 

three  most significant;

3. parallel generation of  the  bits  of  the  other  rows: possible  implementations can  use  the

circuitry of Fig. 1, replicated for each bit of the other  rows. 

All  items  1 to 3 are  independent, and  therefore can  be executed in parallel. Clearly  if, as  

assumed and expected, item  1 is not the bottleneck (i.e., the critical path),  then  the implementation 

of the  proposed idea has reached the  goal of not introducing time  penalties.
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Fig.   3.  Gate-level  diagram   for  first  row  partial  product generation. (a) MBE signals generation. (b) Partial product 
Generation.

Fig. 4. Combined MBE signals and partial product generation for the first row (improved  for speed).

Fig. 5.    Partial product array by applying the two’s complement computation method in [7] to the last row. 

(a) Basic idea 
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(b) Resulting array 

Fig. 6.    Partial product array after adding the last neg  bit to the first row. 

Implementation Description Motivation

Standard multiplier (Any 

row) 

Standard  implementation of the 
MBE: signals one, two,  and  neg 
generated first, and then used to 
produce the par- tial product array 
(Fig. 1). 

The  delay to generate a generic partial 
product row (other than the first one) in 
a standard n × n multiplier represents
the  upper bound for any design aimed at 
removing the last neg signal  

Standard multiplier (First 
row) 

Revisited implementation of the
MBE for the first row: logic for the 
generation of the partial product 
row is simplified as the  y 1 bit is 
always equal to zero

The delay to produce the first row
constitutes the lower bound for any 
scheme trying to  get rid of the MBE 
negative encoding by  incorporating its
effect in the shortest path (i.e., in the 
first row, as in the proposed method). 

Proposed method  
Generation  of the first partial 
product row and fast 3-bit carry 
propagate addition  

The aim is to reduce the number of
partial  product rows from [n/2] + 1 to 
[n/2] thus getting rid of the effect of 
MBE negative encoding. By having
fewer partial product rows, the next 
reduction hardware can be smaller in 
size and faster in speed. The delay will 
be higher than the one of the first row 
for a standard multiplier, but it should be 
lower than any of the other PP rows, 
thus not inducing any time penalty. 

Two’s complement Direct  computation of the last  
partial product row in two’s  
complement per- formed in parallel 
to the production of the  partial 
products of the other  rows 

Similarily as the proposed method,
also this scheme avoids  the  extra 
partial  product  row,  and  its  delay has 
to be  within the delay requirements of 
the other PP rows. The above goal is 
achieved by  replacing partial product 
generation on the last row with partial 
product selection of the multiplicand’s 
two’s comple- ment, thus eliminating the 
need for the last neg signal. With
respect to similar techniques  

Table 2 DE S I G N S F O R T H E GE N E R AT I O N O F T H E PA RT I A L PRO D U CT  ROW S CO N S I D E 

R E D I N T H E E VA L UATION 

4.2 Rectangular Multipliers:

• m × n rectangular multiplier; 

• higher radix Modified Booth Encoding (e.g. radix-8); 

• multipliers with fused accumulation. 

With no loss of generality we assume m n, i.e.  m   = n + m0   with  m0 0, since it leads to the 

smaller number of rows: for simplicity and also with no loss of generality, in the following we assume that both 

m and n are even. Now, we have seen in Fig. 6(a) that for m0 = 0,  then the last neg bit, i.e. 

negn/2 1 belongs  to   the same column as the first row partial  product ppn 2,0 . We  observe  that,  the   

first  partial  product  row  has  bits up  to  ppm,0 ,  and  therefore,  in  order  to  include   in  the first row  also  

the contribution  of  negn/2 1 ,  due  to  the particular  nature  of  operands  it  is  nec e s s a r y  t o  p e r f o r m  

a (m0 + 3)-bit  carry  propagation  (i.e.,  a  (m0   +  3)-bit addition) in the sum qqm+1,0 qqm+1,0

qqm,0 . . . qqn 2,0   = 0 0 ppm,0 . . . ppn 2,0 + 0 1 1 . . . 0 negn/2 1 .  Therefore, for rectangular 
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n

multipliers, the proposed  approach can be applied with the cost of a (m0 + 3)-bit addition. 

Although we have explicitly focused our attention to radix-4 MBE, the proposed method can be easily 

extended  to any radix-B MBE. It is easily observed, by redrawing the equivalent of Fig. 6(a) for another  

radix-B MBE, that the neg  signal of the last row can be included in the first row by using a simple 3-bit 

adder for a n × n multiplier and by using a (m0 + 3)-bit adder  for the more general case of a (n + m0 ) × n

adder. The use of a combined multiplier with accumulation is also common. In this case, the proposed 

approach can  also be used and does not loose the benefit to reduce  by one the number of rows to be added. 

Although this reduction does not necessarily lead to a reduction in the computation time for some values of n,

it still remains interesting and useful since it is very reasonable to expect some savings and more regularity in 

the  compression tree. We have not evaluated such potential  reductions, because their impact could be 

strongly  dependent on the value of n and on the strategy which has been identified to design the 

compression tree. 

V. CONCLUSIONS 

Two’s  complement  n × n   bit  multipliers  using  radix-4 Modified Booth  Encoding  produce  [n/2] partial  

products but due the sign handling, the partial product  array has a maximum height of [n/2]+1. We 

presented  a scheme that produces a partial product array with a maximum height of [n/2], without 

introducing extra delay in the partial product generation stage for m x n bit multipliers. With the extra 

hardware of a  (short) 3-bit addition, and the simpler generation of the first  partial product,  we  have  been  

allowed  to  achieve  a  delay  for the proposed scheme within the bound of the  delay of a standard partial 

product generation. 

The  outcome  of  the  above  is  that  the  reduction  of  the maximum height of the partial product array by

one  unit, may simplify the partial product reduction  tree, in terms of delay and regularity of the layout.  

This is of special interest for all multipliers but especially for short bit-width multipliers for high  

performance embedded cores, where short but fast  bit-width multiplications could be common operations. 
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