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Abstract - Modular arithmetic operations (inversion, multiplication and exponentiation) are used in several 

cryptography applications. RSA and elliptic curve cryptography (ECC) are two of the most well established 

and widely used public key cryptographic (PKC) algorithms. The encryption and decryption of these PKC 

algorithms are performed by repeated modulo multiplications. These multiplications differ from those 

encountered in signal processing and general computing applications in their sheer operand size. Key sizes in 

the range of 512~1024 bits and 160~512 bits are typical in RSA and ECC, respectively. Hence, the long carry 

propagation of large integer multiplication is the bottleneck in hardware implementation of PKC. The 

residue number system (RNS) has emerged as a promising alternative number representation for the design 

of faster and low power multipliers owing to its merit to distribute a long integer multiplication into several 

shorter and independent modulo multiplications. RNS has also been successfully employed to design fault 

tolerant digital circuits. A special moduli set of forms {2n-1, 2n, 2n  +1} are preferred over the generic moduli 

due to the ease of hardware implementation of modulo arithmetic functions   as well as system-level inter-

modulo operations, such as RNS-to-binary conversion and sign detections. To facilitate design of high- speed 

full-adder based modulo arithmetic units, it is worthwhile to keep the moduli of a  high-DR RNS in forms of 

{2n-1, 2n, 2n  +1}.The modulo 2n-1 multiplier is usually the noncritical datapath among all modulo 

multipliers in such high-DR RNS multiplier. With this precept, a family of radix-8 Booth encoded modulo 2n- 

1 multipliers, with delay adaptable to the RNS multiplier delay, is proposed. The modulo 2n-1 multiplier 

delay is made scalable by controlling the word-length of the ripple carry adder, employed for radix-8 hard 

multiple

generation. 

Key Words — Booth  Algorithm, R a d i x - 8 ,  P r e f i x  A d d e r ,  M o d u l o Arithmetic,  Multiplier, 

Residue number system (RNS) 

I. INTRODUCTION 

RIVEST, Shamir, and Adleman (RSA) and elliptic curve cryptography (ECC) are two of the most well established 

and widely used public key cryptographic (PKC) algorithms. The encryption and decryption of these PKC 

algorithms are per-  formed  by repeated modulo multiplications.  The Residue Number System (RNS) is a  non- 

weighted number system that can map large numbers to smaller residues, without any need for carry propagations. 

Its most important property is that additions, subtractions, and 

multiplications  are  inherently  carry-free.  These  arithmetic  operations  can  be  performed  on residue digits 

concurrently and independently. Thus, using residue arithmetic, would in principle, increase the speed of 

computations RNS has shown high efficiency in realizing special purpose applications  such  as  digital  filters  ,  

image  processing  ,  RSA  cryptography and  specific applications for which only additions, subtractions and 

multiplications are used and the number dynamic  range  is  specific.  Special  moduli  sets  have  been  used  

extensively  to  reduce  the hardware complexity in the  implementation of converters and arithmetic operations. 

Among which  the  triple  moduli  set  {2n+1,2n,2n-1}  have  some  benefits.  Since  the  operation  of multiplication 

is of major importance for almost all kinds of processors, efficient implementation of multiplication modulo 2n-1 is 

important for the application of RNS. A residue number system is characterized by a base that is not a single radix 

but an N-tuple of integers (mN,mN-1  … m1). Each of   these mi  (i = 1, 2, … N) is called a modulus. An  integer 
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“X” is represented in the residue number system by N-tuple (xN, xN-1… x1) where xI is a nonnegative integer 

satisfying 

X = mI * qI + xI , ………… 

(1)
where qI is the largest integer such that 0<=xI <= (mI – 1). xi is known as the residue of X modulo mi, and 

notations X mod mi and |X|mi are commonly. Modular Multiplication is the key algorithm of RSA and other 

public key cryptosystems, and so provides an indication of the efficiency of the RNS implementation. The 

majority of  the currently established Public-Key Cryptosystems (RSA, Difie-Hellman, Digital Signature 

Algorithm (DSA), Elliptic Curves (ECC), etc.) require modular multiplication in finite fields as their core 

operation which accounts for up to 99% of the time spent for encryption and decryption. In order to improve 

the performance of the overall cryptosystem, it is therefore crucial to optimize modular multiplication. 

Modulo arithmetic is also widely used in various applications such as digital signal processing  where the 

residue arithmetic is used for digital filter design. Also, the number of wireless  and  internet  communication  

nodes  has  grown  rapidly.  The  confidentiality  and  the security  of  the  data  transmitted  over  these  channels  

has  becoming  increasingly  important. 

Cryptographic algorithms like International Data Encryption Algorithm (IDEA) are frequently used for secured 

transmission of data. Modulo 2
n
+1, 2

n
, 2

n
-1 addition and multiplication are the crucial operations in the IDEA 

algorithm and also modulo 2
n

+1 arithmetic operations are used in Fermat number transform computation. 

Moduli  choices of the forms  {2
n

+1, 2
n

, 2
n

-1} have received significant attention because they offer very 

efficient circuits when considering the area time
2

product and efficient converters from and to the binary 

system.  Therefore, designing efficient modulo 2
n

-1 multipliers is an interesting issue. Modulo 2
n

-1 

multiplication is  used extensively  in  Residue  Number  System  (RNS)  based  Digital  Signal  Processing  

(DSP)  and cryptography units. 

Figure 1 : Modulo (2
n

-1) multiplier architecture 

II. GENERAL CLASSIFICATION OF RNS-BASED MULTIPLIERS:-

Modular RNS-based multipliers can be classified into three main groups. I. The first group deals with specific 

moduli, i.e. 2n-1, 2n, or 2n+1. 

II. The second type uses any moduli value and utilizes special ROM architectures in order to implement the  

multiplier and since a ROM is involved, this type of multipliers tend to be very impractical since memory size 

tend to be very huge for very large moduli values. 

III.  The  third  group  of  multipliers  handle  medium  to  large  values  of  moduli  but  it  uses mainstream 

arithmetic components that have been developed beforehand, thus  facilitating the job of the hardware designer by 

reducing the overall project lifespan. These components could be  regular  binary  multipliers,  adders,  sub  

tractors,  logic  components  and  small  size  ROM 

architectures.
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Figure 2: Type-1 RNS-based modular multiplier architecture 

III. RADIX-8 BOOTH ENCODED MODULO 2N-1 MULTIPLICATION ALGORITHM 

To ensure that the radix-8 Booth encoded modulo multiplier does not constitute the system critical path of a high-

DR moduli set based RNS multiplier, the carry propagation length in the hard  multiple generation should not 

exceed n-bits. To this end, the carry propagation through the Has can be eliminated by making the end-around-carry 

bit c7  a partial product bit to be accumulated in the CSA tree. This technique reduces the carry propagation length 

to n bits by representing the hard multiple as a sum and a redundant end-around-carry bit pair. The resultant end-

around-carry bits in the partial product matrix may lead to a marginal increase in the CSA tree depth and 

consequently, may aggravate the delay of the CSA tree. In which case, it is not sufficient to reduce the carry 

propagation length to merely bits using the above technique. 

IV GENERATION OF PARTIALLY-REDUNDANT HARD MULTIPLE

Let |X2n-1 and 2X2n-1be added by a group of M=(n/k) k-bit RCAs such that there is no carry propagation between 

the adders. Below figure shows this addition for n=8 and k=4. 

Figure 3: Generation of partially-redundant |+3X 2 -1 using k-bit RCAs. 
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-1

n

Figure 4:  Generation of partially-redundant |B+3X 2n   | 

Where the sum and carry-out bits from the RCA block are represented

 as  respectively. In Fig. 6, the carry-out of RCA 0,  is 

not propagated to the carry input of RCA 1 but preserved as one of the partial product bits to be accumulated in the 

CSA tree. The binary weight of the carry-out  of RCA 1  has, however, exceeded the maximum range of the 

modulus and has to be modulo reduced before it can be accumulated by the CSA tree.By Property 2, the binary 

weight of  can be reduced from 28  to 20. Thus, is inserted at the least significant bit (lsb) position. It should be 

stressed that the carry-out is a partial carry propagated through only most significant FAs and hence, is different 

from the end-around-carry bit in the modulo  2n-1addition of X and 2X  i.e., c7  , the partially-redundant form of

 |+3X 2n-1 is given by the partial-sum and partial-carry pair (S, C) where 

Since modulo negation is equivalent to bitwise complementation by Property 1, the negative hard multiple in a 

partially-redundant form,  is computed as follows: 

To avoid having many long strings of ones in  an appropriate bias, B, is added to the hard multiple such that both 

C and  are sparse. The value of is chosen as 

The addends for the computation of the biased hard multiple, |B+3X 2n-1  in a partially-redundant form are X2n-1  

and 2X2  -1  and B or equivalently S , C and B. Since B is chosen to be a binary word that has logic ones at bit 

positions 2kj , and logic zeros at other bit positions. B+3X 2n-1 can be generated  by simple  XNOR  and  OR  

operations  on  the  bits  of  and  at  bit  positions  2kj. Illustrates how these bits in the sum and the carry outputs of 

RCA 0 and RCA 1 are modified. In general |B+3X 2n-1, is given by the partial-sum and partial-carry pair (BS, BC) 

such that 
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Wher

For j= 0, 1…….M-

1. Let 

It can be easily verified that the sum of (BS, BC) and modulo 2n-1 is |2B|2n-1. Therefore, represents the 

partially-redundant form of |B-3X|2n-1. 

V. RADIX-8 BOOTH ENCODED MODULO MULTIPLICATION WITH PARTIALLY- REDUNDANT

PARTIAL PRODUCTS 

The i-th partial product of a radix-8 Booth encoded modulo 2n-1 multiplier is given by 

To include the bias B necessary for partially-redundant representation of   PPi, (12) is modified to 

Using  Property  3,  the  modulo  2n-1  multiplication  by  23i   , in  (13)  is  efficiently implemented as bitwise 

circular-left-shift of the biased multiple,(B+ di . X). For n=8, k=4, Fig. 9 illustrates the partial product matrix of |X 

.Y|28-1    with   partial products in partially- redundant representation. Each PPi consists of an n-bit  

vector, ppi7,  ppi1,  ppi0  and a vector of n/k=2, redundant carry bits qi1,qi0 . Since qi0   and  qi1 are the carry-out 

bits of the RCAs, they are displaced by k-bit positions for a given PPi. The bits, qij is displaced circularly to the left 

of q(i-1)j by 3 bits, i.e., q20 and q21     are displaced circularly to the left of   q10 and q11    by 

3 bits, respectively q10   and  q11  are in turn displaced to the left of q00   and  q01    by 3 bits, respectively. The last  

partial product  in  the Compensation Constant (CC) for the bias introduced in the partially- redundant 

representation. 
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Figure. 5. Modulo-reduced partial product generation. 

The generation of qij the modulo-reduced partial products, PP0, PP1, and PP2, in a partially-redundant 

representation using Booth Encoder (BE) and Booth Selector (BS) blocks are illustrated in Fig.  5. The BE block 

produces a signed one-hot encoded digit from adjacent overlapping multiplier bits as illustrated in Fig. 6(a). The 

signed one-hot encoded digit is then used to select the correct multiple to generate PPi. A bit-slice of the radix-8 BS 

for the partial product bit, ppij is shown in Fig. 6(b). As the bit positions of do not overlap, as shown in Fig. 5, they 

can be merged into a single partial product for accumulation. The merged partial products, PPi  and the constant CC 

are accumulated using a CSA tree with end-around-carry addition at 

each CSA level and a final two-operand modulo 2n-1 adder 

Figure. 6(a) Bit-slice of Booth Encoder (BE) Figure. 6(b) Bit-slice of Booth Selector (BS 
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VI. PARALLEL PREFIX ADDER 

To humans, decimal numbers are easy to comprehend and implement for performing arithmetic. 

However, in digital systems, such as a microprocessor, DSP (Digital Signal Processor) or ASIC (Application-

Specific  Integrated  Circuit),  binary  numbers  are  more  pragmatic  for  a  given computation. This  occurs 

because binary values are optimally efficient at representing many values. Binary adders are one of the most 

essential logic elements within a digital system. 

VI.I Modulo (2n-1) addition: - 

Modulo (2n-1) addition is the same as one’s complement addition can be formulated as 

The modulo 2n  reduction is automatically performed if an n-bit adder is used. Note that the value “11…..1” never  

occurs and that only one single representation “00…..0” of zero exists. The equation (14) can be rewritten using the 

condition A+B  2n 

=

Now, zero has a double representation (“00…..0” and “11…..1”)..Since the new condition A+B  2n   is 

equivalent to cout=1,where cout   is the carryout of the addition A + B, equation (5.3.2) can be rewritten as (A+B) 

mod=(A+B+ cout ) mod2n   Therefore, modulo (2n-1) addition with a double representation of zero can be realized 

by the n-bit end-around-carry parallel-prefix adder of with cin  = cout .The additional condition of A +  B  =  2n-1  =  

11  ….  1  found  in   is equivalent to 

6.1. A PARALLEL PREFIX ADDER CAN BE SEEN AS A 3-STAGE PROCESS

Pre-computation:

In pre-computation stage, each bit computes its carry generate (g)/propagate (p) signals and a temporary sum as 

below. These two signals are said to describe how the Carry-out signal will be handled. 

Prefix: 

In the prefix stage, the group carry generate/propagate signals are computed to form the carry 

chain and provide the carry-in for the adder below. Various signal graphs/architectures can be used  to calculate the 

carry-outs for the final sum those are Sklansky,Kogge-Stone prefix tree, Brent-kung, Ladner-Fischer,Han-Carlson 

Prefix Tree 

International Journal of Latest Trends in Engineering and Technology (IJLTET)

Vol. 2 Issue 3 May 2013 272 ISSN: 2278-621X



Post-computation:

In the post-computation stage, the sum and carry-out are finally produced. The carry-out can be omitted if only a 

sum needs to be produced. 

Figure 7: Parallel Prefix Addition Process Steps 

Proposed Prefix Theme

In a prefix problem, n inputs xn-1, xn-2 ….. .x0  and an arbitrary associative operator  ”  ” are used compute n 

outputs    for i=0,1,2….n-1.Thus each output yi is dependent on all  

inputs xj  of same or lower magnitude (j  i) .Carry propagation in binary addition is a prefix problem. The n-bit 

carry propagate addition with input operands A and B, carry-in cin, sum output S, and carry-out cout can be 

expressed by the logic equations: 

6.2 PRE-PROCESSING:

PREFIX COMPUTATION:

POST- PROCESSING :

For i=0, 1,2….n-1, l=1,….m,  and 0  k  j  i where ai  and bi  are the operand input signals, gi and pi  the 

generate and propagate, ci    the carry, and si  the sum output signals at bit position i. c0 and cn   correspond to the  

carry-in and carry-out cout  , respectively   denote the group generate and propagate signals for 

the group of bits i,…., k at level l. The “ ” operator is repeatedly applied according to a given prefix structure of m 

levels in order to compute the group generate signal  for each bit position i 
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6.3 PARALLEL PREFIX ADDER ALGORITHMIC ANALYSIS 

VII. CONCLUSION 

In conclusion, a new approach for multiplication modulo (2n- 1) is proposed. Similar to the binary multiplier,  the generation of the

partial products is accomplished by AND gates. The Wallace tree is applied to reduce the speed for compression of column size from

N to two. To completely utilize the unequal delay of a full adder, an algorithm for delay optimization of the Wallace tree is developed. 

The proposed approach exhibits superior  performance, in terms of either speed of hardware requirement, in comparison with a recent 

counterpart for the  same purpose.  In  addition,  the  proposed  multiplier  modulo  (2n-  1)  shows  an  extremely  regular structure

and is very suitable for VLSI implementation. 

REFERENCES 
[1] R. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures and public key cryptosystems,” Commun. ACM, vol. 21, no. 2, pp. 120–

126, Feb. 1978. 

[2] V. Miller, “Use of elliptic curves in cryptography,” in Proc. Advances in Cryptology- CRYPTO’85, Lecture Notes in Computer Science, 1986, vol. 218, pp. 

417–426.

[3] R. Zimmermann, “Efficient VLSI implementation of modulo 2
n

-1/2
n

+1 addition and multiplication,” in Proc. 14th IEEE Symp. Computer Arithmetic, 

Adelaide, Australia, Apr. 1999, pp. 158–167. 

[4] C. Efstathiou, H. T. Vergos, and D. Nikolos, “Modified Booth modulo  2
n

- multiplier,” IEEE Trans. Comput., vol. 53, no. 3, pp. 370–374, Mar. 2004. 

[5] B. S. Cherkauer and E. G. Friedman, “A hybrid radix-4/radix-8 low power signed multiplier architecture,” IEEE Trans. Circuits Syst. II, Analog Digit. 

Signal Process., vol. 44, no. 8, pp. 656–659, Aug. 1997. 

[6] G. Dimitrakopoulos, D. G. Nikolos, H. T. Vergos, D. Nikolos, and C. Efstathiou, “Newarchitectures for modulo 2
n

-1 adders,” in Proc. 12
th 

IEEE Int. 

Conf. Electronics, Circuits and Systems, Gammarth, Tunisia,  Dec. 2005, pp. 1–4. 

[7] R. A. Patel, M. Benaissa, and S. Boussakta, “Fast Parallel-prefix architectures for modulo 2
n

-1 addition with a single representation of zero,” IEEE 

Trans. Comput., vol. 56, no. 11, pp.  1484–1492, Nov. 2007. 

[8] R. Muralidharan and C. H. Chang, “Fast hard multiple generators for radix-8 Booth encoded modulo 2
n

-1and modulo 2
n

+1multipliers,” in Proc. 2010 

IEEE Int. Symp. Circuits and Systems, Paris, France, Jun. 2010, pp. 717–720. 

[9] G. W. Bewick, “Fast multiplication: Algorithms and implementation,” Ph.D. dissertation, Stanford Univ., Stanford, CA, 1994. 

International Journal of Latest Trends in Engineering and Technology (IJLTET)

Vol. 2 Issue 3 May 2013 274 ISSN: 2278-621X


