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Abstract: - The ordinary network security applications generally require the ability to perform powerful pattern 
matching to protect against attacks such as viruses. In normal case hardware solutions are intended for firewall 
routers. The solutions in the literature for firewalls are not scalable and they do not address the difficulty of a 
antivirus with ever large pattern set. The goal of this work is to provide a systematic virus detection hardware 
solution for embedded network security systems. It is a two phase dictionary based antivirus processor that works by 
condensing as much of the important filtering information as possible onto a chip and infrequently accessing off chip 
data to make the matching mechanism scalable to large pattern sets. In the first stage, the filtering engine can filter 
out more than 93% of data as safe, using a merged shift table. Only 7% or less of potentially unsafe data must be 
precisely checked in the second stage by the exact-matching engine from off-chip memory. 
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I. INTRODUCTION 
Network security is an important issue. The end users are vulnerable to virus attacks. They may visit malicious 
websites or hackers may gain to their computers and use them as zombie computers to attack others. Firewalls 
were first introduced to ensure a secure network environment to block unauthorized internet users from 
accessing resources in a private network by simply checking the packet head (MAC address/IP address/port 
number). This method significantly reduces the probability of being attacked. However, attacks such as spam, 
spyware, worms, viruses, and phishing target the application layer rather than the network layer. Therefore, 
traditional firewalls no longer provide enough protection. Many solutions, such as virus scanners, spam-mail 
filters, instant messaging protectors, network shields, content filters, and peer-to- peer protectors, have been 
effectively implemented. Initially, these solutions were implemented at the end user side but tend to be merged 
into routers/firewalls to provide multilayered protection. As a result, these routers stop threats on the network 
edge and keep them out of corporate networks. 

1.1. Firewall routers

When  a  new  connection  is  established,  the  firewall router scans the connection and forwards these packets 
to the  host  after  confirming  that  the  connection  is  secure. Because firewall routers focus on the application 
layer of the OSI model, they must reassemble in-coming packets to restore the original connection and examine 
them through different application parsers to guarantee a secure network environment.  For instance, suppose a 
user searches for information on web pages and then tries to download a compressed file from a web server. In 
this case, the firewall router might initially deny some connections from the firewall based on the target’s IP 
address and the connection port. Then, the fire-wall router would monitor the content of the web pages to 
prevent the user from accessing any page that connects to malware links or inappropriate content, based on 
content filters.  When the user wants to download a compressed file, to ensure that the file is not infected, the 
firewall router must decompress this file and check it using antivirus programs. 
In summary, firewall routers require several time-consuming steps to provide a secure connection. Therefore 
here it is introducing an advanced pattern based virus detection algorithm that can be used for developing a 
virus detection processor to accelerate the detection speed. 
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II      PROPOSED SYSTEM 

There are many algorithms and accompanying hardware accelerators for fast pattern matching. One of the 
typical algorithms is the automation approach.  This approach is based on Aho and Corasick’s algorithm (AC), 
which introduces a lineartime algorithm for multipattern. Its performance is not affected by the size of a given 
pattern   set   (the   sum   of   all   pattern   lengths). 
In contrast, heuristic approaches are based on the Boyer-Moore   algorithm, which was introduced in 1977. It’s 
key feature is the shift value, which shifts the algorithm’s   search window for multiple characters when it 
encounters a mismatch. The search window is a range of text exactly   fetched   by pattern matching algorithms 
for each examination. This algorithm performs better because it makes fewer comparisons than the naïve 
pattern-matching algorithm. At runtime, the Boyer-Moore algorithm uses a pattern pointer to locate a candidate 
position by assuming that a desired pattern exists at this position. The algorithm then shifts its search window to 
the right of this pattern. By default, desired patterns can exist in any position of a text; therefore, all positions in 
a text are candidate positions and must be examined. If the string of search windows does not appear in the 
pattern, the algorithm can shift the pattern pointer to the   right   and   skip   multiple   characters   from   the 
candidate position to the end of the pattern without making comparisons. Based on this concept, Wu and 
Manber (WM) modified the Boyer-Moore algorithm to search for multiple patterns.  
However, the performance of both of these algorithms is bounded by the pattern length. Software-based Bloom 
filters were first described in 1970. These filters can determine whether an element is a non-member of a given 
set in a constant amount of time using several hash functions and a bit vector. The Bloom filter method is 
exceptionally space-efficient. In a typical case, the filter rate for 30 000 patterns reaches 90% and requires only 
34.76 kB of memory. 

2.1 Virus Detection Processor 

Virus detection processor shown in Fig1 is a two phase pattern matching architecture mostly comprising the 
filtering engine and   the exact-matching engine.  

Fig. 1. Virus Detection Processor architecture 

The filtering engine is a front end module responsible for filtering out secure data efficiently and indicating  

Fig. 2.  Two phase execution flow 

to candidate positions that patterns possibly exist at the first stage. The exact-matching engine is responsible 
for verifying the alarms caused by the filter engine. Only  a  few  unsaved data need to be checked precisely  by  
the  exact-matching  engine  in  the  second stage. 
The proposed exact-matching engine also supports data prefetching and caching techniques to hide the access 
latency of the off-chip memory by allocating its data structure well. The other modules include a text buffer 
and a text pump that prefetches text in streaming method to overlap the matching progress and   text reading. A 
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load/store interface was used to support bandwidth sharing 
This proposed architecture has six steps shown in Fig.2 for   finding patterns. Initially, a pattern pointer is 
assigned  to  point  to  the  start  of  the  given  text  at  the filtering  stage.  Suppose the pattern matching 
processor examines the text from left to right. The filtering engine fetches a piece of text from the text buffer. 
If the position indicated   by   the   pattern   pointer   is   not   a   candidate position, then the filtering engine 
skips this piece of text and shifts the pattern pointer right multiple characters to continue to check the next 
position 

2.2.  Filtering Engine (FE) - 

 The   overall performance   strongly   depends   on   the filtering engine. The most important issue is to 
provide a high filter rate with limited space. Two classical filtering algorithms were introduced for pattern 
matching in the following sections. 

2.3 Wu-Manber Algorithm

The Wu-Manber algorithm is a high-performance, multi-pattern matching algorithm based on the Boyer-Moore 
algorithm. It builds three tables in the pre processing stage: a shift table, a hash table and a prefix table. The Wu-
Manber algorithm is an exact-matching algorithm, but its shift table is an efficient filtering structure. The shift 
table is an extension of the bad character concept in the Boyer-Moore algorithm, but they are not identical. 
The matching flow is shown in Fig. 3(a). The matching flow matches patterns from the tail of the minimum 
pattern in the pattern set, and it takes a block of B characters from the text instead of taking them one-by-one. 
The shift table gives a shift value that skips several characters without comparing after a mismatch. After the 
shift table finds a candidate position, the Wu-Manber algorithm enters the exact-matching phase and is 
accelerated by the hash table and the prefix table. Therefore, its best performance is O(BN/m) for the given text 
with length N and the pattern set, which has a minimum length of m. The performance of theWu-Manber 
algorithm is not proportional to the size of the pattern set directly, but it is strongly dependent on the minimum 
length of the pattern in the pattern set. The minimum length of the pattern dominates the maximum shift 
distance (m - B+1) in its shift table. However, the Wu-Manber algorithm is still one of the algorithms with the 
best performance in the average case. 
For the pattern set {erst, ever,there}shown in Fig 3(d), the maximum  shift value is three characters for B=2 and 
m=4. The  related  shift  table,  hash  table  and prefix  are  shown  in  Fig.  3(b) and Fig. 3(c).  The Wu- Manber 
algorithm scans patterns from the head of a text, but it compares the tails of the shortest patterns. In step 1, the 
arrow indicates to a candidate position that a wanted pattern probably exists, but the search window is actually 
the character it fetches for comparison. 

Fig. 3. Wu-Manber matching process. (a) Matching flow; (b) shift table;  (c) hash table  +  prefix  table; (d) matching process.

According to shift[ev]=2, the arrow and search window are   shifted   right   by   two   characters.  Then,   the   
Wu Manber  algorithm  finds  a  candidate  position  in  step  2 due  to  shift[er=0] . Consequently, it checks the 
prefix table  and  hash  an  exact-matching  and  then  outputs  the “ever”  in  step  3.After  completing  the  
exact  match,  the Wu-Manber algorithm returns to the shifting phase, and it shifts the search window to the 
right by one character to find the next candidate   position instep 4. The algorithm keeps shifting the search 
window until touching the end of the string in step 6. 

2.4 Bloom Filter Algorithm

A Bloom filter is a space-efficient data structure used to test whether an element exists in a given set.  This 
algorithm is composed of ‘k’ different hash functions and a long vector of ‘v’ bits. Initially, all bits are set to 0 
at the pre processing stage.  To  add  an  element,  the  Bloom  filter hashes  the  element  by  these  hash  
functions  and  gets positions of its vector. The Bloom filter then sets the bits at these positions to 1.  The value 
of vector that only contains an element is called the signature of an element. To  check  the  membership  of  a  
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particular  element,  the Bloom  filter  hashes  this  element  by  the  same  hash functions at run time, and it 
also generates positions of the vector. If all of these bits are set to 1, this query is claimed to be positive, 
otherwise it is claimed to be negative. The output  of  the  Bloom  filter  can  be  a  false  positive  but never a 
false negative. Therefore, some pattern matching algorithms based on the Bloom filter must operate with an 
extra exact-matching algorithm. If all of these bits are set to 1, this query is claimed to be positive, otherwise it 
is claimed to be negative. The output  of  the  Bloom  filter  can  be  a  false  positive  but never a false negative. 
Therefore, some pattern matching algorithms based on the Bloom filter must operate with an extra exact-
matching algorithm. 

Fig. 4(a) describes a typical flow of pattern matching by Bloom filters. This algorithm fetches the prefix of a 
pattern   from   the   text   and   hashes   it   to   generate   a signature.   Then,   this   algorithm   checks   
whether   the signature exists in the bit vector. If the answer is yes, it shifts the search window to the right by 
one character for each comparison and repeats the above step to filter out safe data until it finds a candidate 

Fig.4  Bloom filters matching process.  (a)  Matching flow; (b)  bit-vector building; (c)  matching process. 

position and launches exact-matching. Fig. 4(b)  shows  how  a  Bloom  filter builds  its  bit  vector  for  a 
pattern  set  {erst,  ever,  there} for two given hash functions. The filter only hashes all of   the   pattern   
prefixes   at   the   pre   processing stage. Multiple  patterns  setting  the  same  position  of  the  bit vector  are  
allowed.  Fig.  4(c) shows an example of the matching process.  The arrows indicate the candidate positions. 
The grey bars represent the search candidate positions.  The  gray  bars  represent  the  search  window that  the  
Bloom  filter  actually  fetches  for  comparison. Both the candidate position and search window are aligned   
together.    

Thus,   the   Bloom   filter   scans   and compares patterns from the head rather than the tail, like the Wu-
Manber algorithm.  In step1, the filter hashes “He” and mismatches the signature with the bit vector. The filter 
then shifts right 1character and finds the next candidate position.  For  the  search  window  “ee”,  the Bloom  
filter  matches  the  signature  and  then  causes  a false alarm to perform an exact matching in steps 2 and 3. 
The filter then returns to the filtering stage and shifts one character to the right in step 4, which launches a true 
alarm for the pattern “ever”. Finally the bloom filter filters the rest of the text and finds nothing. 

2.5 Shift-Signature Algorithm 

The proposed algorithm re-encodes the shift table to merge the signature table into a new table named the shift-
signature table.  The  shift-signature  table  has  the same  size  as  the  original  shift  table,  as  its  width  and 
length are the same as the original shift table. There are two fields, S-flag and carry, in the shift signature table. 
The carry field has two types of data: a shift value and a signature. These two data types are used by two 
different algorithms. Thus, the S-flag is used to indicate the data type of a carry. The filtering engine can then 
filter the text using a different algorithm while providing a higher filter rate. The method used to merge these 
two tables is described as follows. First, the algorithm generates two tables, a shift table and signature table, at 
the pre processing stage. The S-flag is a1-bit field used to indicate the data type of the carry. Two data types, 
shift value or signature, are defined for a carry.  The size and width of the shift signature table are the same as 
those of the original shift table.   
To merge these two tables, the algorithm maps each entry in the shift table and signature table onto the shift-
signature table. For the non-zero shift values, the S- flags are set, and their original shift values are cut out at 1-
bit to fit their carries.  Conversely, for the zero shift values, their S-flags are clear, and their carries are used to 
store their signatures. In this method, all of the entries in the shift-signature table contribute to the filtering rate 
at run time.  Because  of  the  address  collision  of  bad- characters,  most  entries  contain  less  than  half  of  
the maximum shift distance for a large pattern set. Therefore, although this method sacrifices the 
maximum shift distance, the filter rate is not reduced but rather improved. 
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Fig. 5(a) shows an example of generating the shift and signature tables. Suppose the length   of the shortest 
pattern “patterns” in the pattern set is 8 characters. The size of the bad-character is 2 characters, thus the 
Maximum shift distance is 8-2+1=7 characters.  Seven possible bad-characters (“pa”, “at”, “tt”, “te”, “er”, 
“rn”,“ns”) are defined according to the Wu-Manber algorithm, and their shift values are 6, 5, 4, 3, 2, 1, and 0. 
Before replacement, the algorithm first builds the signature table. For each pattern, the algorithm hashes the tail  

Fig. 5.  Table generation and re-encoding of shift- signature algorithm.  (a)  Table generation; (b) table re- encoding.

Fig. 6. Matching flow and filtering example. (a) Filtering flow; (b) shift filtering; (c) signature filtering. 

characters of a pattern (blue bar) to generate its signature. The signature is then assigned to the signature table 
indexed by the bad-character “ns”.  For multiple signatures mapped to the same entry, the entry stores the results 
of the OR operation of these signatures. In  this work,  we  only  use  one  hash  function  because  of  the space  
limitation  of  the  signature  table.  The  method  of merging  the  shift  table  and  signature  table  is  shown  in 
Fig.  5(b).  The shift[ns] is  replaced  by  its  signature  (“010”  in binary)  because  its  shift  value  is  zero. In 
contrast, the shift [at] =5 and shift[er] =2 keep their shift values in the shift-signature table. 
The filtering flow is shown in Fig. 6(a) for the pattern set {patterns}, Fig. 6(b) and Fig. 6(c) illustrate how the 
filtering engine filters out the given text. The filtering engine fetches the text from the search window (blue bar), 
as shown in Fig. 6(c).One part of the fetched text (red bar), shown in Fig.  6(b) is used as a bad character to 
index the shift-signature table. If the S-flag is set, the carry is treated as a shift value. As a result, the filtering 
engine shifts the candidate position to the right by two characters for the text “overhead”, as shown in Fig 6(b). 
Conversely, if the S-flag is clear, the carry is treated as a signature. The filtering engine hashes the fetched text 
and matches it with the signature read from the shift-signature table. 

2.6. Exact Match Engine (EME) 

The EME must verify the false positives when the filtering engine alerts. It precisely identifies patterns for 
upper-layer applications. The AC algorithm uses loose tries, which check each input character in a constant 
amount of time because of their fan-out states for all possible input characters. Thus, the input data do not affect 
the AC-based algorithm’s performance, but their memory requirements increase exponentially with pattern size. 
However, this method has potential performance problems because it may redundantly search link lists formed 
by sibling pointers. Despite this limitation, compact tries are still highly practical because, in practice, attack 
texts are not easy to generate. Attacks can be avoided by removing patterns that cause attacks before 
constructing the pattern database. For this reason, we use compact tries as our exact-matching engine’s 
algorithm, and we propose several solutions to mitigate the effect of algorithmic attacks.  

2.7 Exact-matching flow 

International Journal of Latest Trends in Engineering and Technology (IJLTET)

Vol. 2  Issue 1  January 2013 23 ISSN: 2278-621X



Fig 8 shows the flow chart of the Exact-matching flow used in the exact matching engine. The processing steps 
are as given below. 
Step 1)  This engine fetches a piece of text from the text pump 

according to the address given by the filter engine. 
Step 2)  If this is the first reading of the trie table for this alarm, then this engine hashes this text to generate the 

root address of its trie tree. Otherwise, it chooses the sibling pointer of the trie node that the engine last 
read as the new address. 

Step 3) This engine fetches the trie node from memory according to the address provided by the above step. 
Step 4) The engine compares this piece of text with the trie node. If the content of the trie node is the same as 

the piece of text, it jumps to Step 6. Otherwise, the engine continues and checks whether this node has 
a sibling pointer. 

Step 5)  If a sibling exists, the engine jumps to Step 3 and fetches its sibling node, according to the pointer. 
Otherwise, it jumps to Step 7 to execute the trie-skip mechanism. 

Fig. 7 Exact-Matching Flow. 

Step 6) If a pattern exists at this node, the engine reports the pattern ID and goes to Step 7. Otherwise, it shifts 
the pattern pointer right and back to Step 1 to repeatedly examine the next piece of text. 

Step 7) The pattern pointer shifts right several characters by the skip value. If the node has a jump node, the 
engine updates its state using this jump node and fixes its search window by the suffix offset. The 
engine then returns to Step 1. Otherwise, the engine finishes the verification and hands control back to 
the filtering engine. 

Fig. 8.  shows an example of exact matching. After the filtering engine launches an alert, the exact-matching 
engine gets a slice of the input text “ther” and hashes this text to generate the root address. The engine then 
reads the root node from memory compares it with the text and successfully matches the string at step 1. The 
exact-matching engine continues to compare the child node “eina”, indicated by the child pointer of the root 
node at step 2, but it mismatches its child node. However, the child node “eina” has a sibling node; thus, it 
keeps comparing its sibling node at step 3. The engine then mismatches the node “rule” with the text “seto” at 
step 4. The exact-matching engine then returns control to the filtering engine to find the next candidate position. 
Finally, the pattern matching matches pattern 3 at the tail of the text. Observing the matching flow of the exact-
matching engine in Fig. 8, we notice that the filtering engine can only shift one character right to the next 
candidate position after the exact matching engine mismatches. This method may be vulnerable to algorithmic 
attacks. Just like the node “rule” in Fig. 8 the exact-matching engine cannot be sure where to jump when the 
input string is not “rule.” The engine cannot enter its failure state immediately when a mismatch occurs because 
the compact trie does not contain failure states for all possible input strings. 
However, the engine can still jump to its failure state based on its previously matched nodes: “ther” and “eisa”. 
The following section describes cases for the failure state and how we implement it in the compact trie. 
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                                                               Fig. 8. Exact-Matching With A Multiple-Character Compact Trie

III. SIMULATION RESULTS 

3.1. Wu-Manber algorithm

3.2.  Bloom Filter algorithm 
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3.3. Shift-Signature Algorithm 

3.4.  AC algorithm 

IV     CONCLUSION 
Many previous designs have claimed to provide high performance,  but  the  memory  gap  created  by  using 
external  memory decreases performance  because  of  the increasing size of virus databases. Furthermore, 
limited resources restrict the practicality of these algorithms for embedded network security systems. Two-
phase heuristic algorithms are a solution with a tradeoff between performance and cost due to an efficient filter 
table   existing   in   internal   memory;   however,   their performance is easily threatened by malicious attacks. 
This work analyzes two scenarios of malicious attacks and   provides two   methods   for   keeping performance 
within a reasonable range. First, were-encoded the shift table to make it provide a bad-character heuristic 
feature and  high  filter  rates  for  large  pattern  sets  at  the  same time.  Second, the proposed skip mechanism 
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increases the blow to performance under algorithmic attacks. 
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