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Abstract- Sequential pattern mining is aims to discover interesting sequential patterns in a sequence database and it is 
one of the essential data mining tasks widely used in various application fields. Positive and negative sequential Patterns 
mining is an aim to find more interesting sequential patterns, considering the different minimum support of each data 
item in a sequence database. Generally, the generation order of data elements is considered to find sequential patterns. 
Advancements in Statistics, Machine Learning, Artificial Intelligence, Pattern Recognition and Computation capabilities 
have evolved the present day’s data mining applications and these applications have enriched the various fields of human 
life including business, education, medical, scientific etc. 
Keywords – : Data Mining, Sequential Patterns, Data Elements. 

I. INTRODUCTION 
Data mining is the extraction of hidden predictive information from large databases, is a powerful new technology 
with great potential to help companies focus on the most important information in their data warehouses. The 
Apriori-based algorithms find frequent item sets based upon an iterative bottom-up approach to generate candidate 
item sets. Since the first proposal of association rules mining by R. Agrawal [1, 2], Nowadays, with the rapid 
development of information technology, especially the web service-based application, service-oriented architecture 
and cloud-computing, continually expanding data are integrated to generate useful information. Many techniques 
have been used for data mining. Association rules mining (ARM) is one of the most useful techniques. The 
challenges associated with ARM, especially for parallel and distributed data mining, include minimizing I/O, 
increasing processing speed and reducing communication cost [3]. A major concern in ARM today isto continues to 
improve algorithm performance. 
 
1.1 DATA MINING 
 
Data mining can be viewed as a result of the natural evolution of information technology. The database system 
industry has witnessed an evolutionary path in the development of the following functionalities data collection and 
database creation, data management (including data storage and retrieval, and database transaction processing), and 
advanced data analysis (involving data warehousing and data mining). For instance, the early development of data 
collection and database creation mechanisms served as a prerequisite for later development of effective mechanisms 
for data storage and retrieval, and query and transaction processing. With numerous database systems offering query 
and transaction processing as common practice, advanced data analysis has naturally become the next target [12]. 
It is the process of finding correlations or patterns among number of fields in large relational databases. It is 
primarily used today by companies with a strong consumer focus - retail, financial, communication, and marketing 
organizations. It enables these companies to determine relationships among "internal" factors such as price, product 
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positioning, or staff skills, and "external" factors such as economic indicators, competition, and customer 
demographics. It also enables them to determine the impact on sales, customer satisfaction, and corporate profits.  

 

1.2 ASSOCIATION RULES 
Association rules are statements that help uncover relationships between seemingly unrelated data in a relational 
database or other information repository. An example of an association rule would be "If a customer buys a dozen 
eggs, he is 80% likely to also purchase milk. Obtained from reference [6] "An association rule has two parts, an 
antecedent (if) and a consequent (then). An antecedent is an item found in the data. A consequent is an item that is 
found in combination with the antecedent. Association rules are created by analyzing data for frequent ‘if/then’ 
patterns and using the criteria support and confidence to identify the most important relationships. Support is an 
indication of how frequently the items appear in the database. Confidence indicates the number of times the if/then 
statements have been found to be true. In data mining, association rules are useful for analyzing and predicting 
customer behavior. They play an important part in shopping basket data analysis, product clustering, and catalog 
design and store layout.

Support is an indication of how frequently the items appear in the database. The support of an association rule is the 
percentage of groups that contain all of the items listed in that association rule. [4] 
Support of item ‘a’ = (p/q) 
p = Number of groups containing that item ‘a’ 
q = Total number of groups 

 Confidence indicates the number of times the if/then statements have been found to be true. The 
confidence value indicates how reliable this rule is. The higher the value, the more often this set of items is 
associated together [6]. 

 
Confidence (‘A’ -> ‘B’) = Support (‘A’U’B’) / Support (‘A’) 
Support (‘A’U’B’) = number of groups containing ‘A’ and ‘B’. 
Support (‘A’) = number of group containing ‘A’.  
In data mining, association rules are useful for analyzing and predicting customer behavior. They play an important 
part in shopping basket data analysis, product clustering, and catalog design and store layout. 

1.3 SEQUENCE DATABSE 
A sequence database consists of sequences of ordered elements or events, recorded with or without a concrete notion 
of time. There are many applications involving sequence data. Typical examples include customer shopping 
sequences, Web click streams, biological sequences, sequences of events in science and engineering, and in natural 
and social developments. So a sequence is represented as an ordered list of data elements. A sequence database can 
be represented as a tuple <SID, Sequence Item List>, where SID: represents the sequence identifier and Sequence 
Item List specifies the sequence. Here follows the example. 

 
Table 1.1: sequence database 

SID SEQUENCES 

10 <a(abc)(ac)d(cf)> 

20 <(ad)c(bc)(ae)> 

30 <(ef)(ab)(df)cb> 
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40 <eg(af)cbc> 

1.4 SEQUENTAIL DATA 
Sequential data referred to as temporal data, can be thought of as an extension of record data, where each record has 
a time associated with it [9]. Consider a retail transaction data set that also stores the time at which the transaction 
took place. This time information makes it possible to find patterns such as “candy sales peak before Halloween.”A 
time can also be associated with each attribute. For example, each record could be the purchase history of a 
customer, with a listing of items purchased at different times. Using this information, it is possible to find patterns 
such as “People who buy DVD players tend to buy DVDs in the period immediately following the purchase”. The 
below table is shows an example of sequential transaction data. There are five different times- t1, t2, t3, t4, and t5: 
three different customers—C1, C2, and C3: and five different items—A, B, C, D, and E [13]. 

 
Table 1.2: Sequential transaction data 

Time Customer Items purchased 
t1 C1 A, B 
t2 C3 A, C 
t2 C1 C, D 
t3 C2 A, D 
t4 C2 E 
t5 C1 A, E 

 
Customer Time and Items Purchased 
C1 (t1: A, B) (t2: C, D) (t5: A, E) 
C2 (t3: A, D) (t4: E) 
C3 (t2: A, C) 

1.5 FINDING SEQUENTAIL PATTERNS 
Terminology the length of a sequence is the number of item sets in the sequence. A sequence of length k is called a 
k-sequence. The sequence formed by the concatenation of two sequences x and y is denoted as x.y. The support for 
an item set i is defined as the fraction of customers who bought the items in i in a single transaction. Thus the 
itemset i and the l-sequence (i) have the same support. An item set with minimum support is called a large itemset or 
Litemset. Note that each itemset in a large sequence must have minimum support. Hence, any large sequence must 
be a list of Litemsets [9]. 

1.6 SEQUENTAIL PATTERN MINING 
 
Sequential pattern mining is the mining of frequently occurring ordered events or Subsequences as patterns. An 
example of a sequential pattern is “Customers who buy a Canon digital camera are likely to buy an HP color printer 
within a month.” For retail data, sequential patterns are useful for shelf placement and promotions. This industry, as 
well as telecommunications and other businesses, may also use sequential patterns for targeted marketing, customer 
retention, and many other tasks. 
Other areas in which sequential patterns can be applied include Web access pattern analysis, weather prediction, 
production processes, and network intrusion detection. Notice that most studies of sequential pattern mining 
concentrate on categorical (or symbolic) patterns, whereas numerical curve analysis usually belongs to the scope of 
trend analysis and forecasting in statistical time-series analysis.[9] 
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Let I= {a, b, c, d, e, and f} be the set of all items. An item set is a nonempty set of items. A sequence is an ordered 
list of events. A sequence ‘S’ is denoted S=<s1, s2...sl>, where event s1 occurs before s2, which occurs before s3, and 
so on. 

 
 
 

A Sequence S: < a (abc) (ac) d (cf) > 
 
                  s1          s2…………s5               
 
Event sj is also called an element of sequence S. In the case of customer purchase data, an event refers to a shopping 
trip in which a customer bought items at a certain store. The event is thus an item set, that is, an unordered list of 
items that the customer purchased during the trip. The item set (or event) is denoted sj=<x1, x2… xk>where xk is an 
item. For brevity, the brackets are omitted if an element has only one item, that is, element (x) is written as x. 
Suppose that a customer made several shopping trips to the store. 
These ordered events form a sequence for the customer. That is, the customer first bought the items in s1, and then 
later bought the items in s2, and so on. An item can occur at most once in an event of a sequence, but can occur 
multiple times in different events of a sequence. The number of instances of items in a sequence is called the length 
of the sequence. A sequence with length l is called an l-sequence. A sequence =< a1 a2 … an > is called a 
subsequence of another sequence =< b1 b2 … bm >and  is a super sequence of , denoted as   , if there exist 
integers 1  j1 < j2 <…< jn m such that a1  bj1, a2  bj2… an  bjn . 
For example, if =< (ab), d> and =< (abc), (de)> where a, b, c, d, and e are items, then  is a subsequence of  and 

 is a super sequence of . A sequence database, S, is a set of tuples, <SID, Sequence Item List >, where SID is a 
sequence identifier and Sequence Item List is a sequence. For an example, S contains sequences for all customers of 
the store. A sequential pattern with length l is called an l-pattern.[16] 

 II. LITERATURE SURVEY 

The problem of mining sequential patterns in the large databases introduced by Rakesh et al. [9] by presenting pre 
algorithms such as apriori sum, apriori all, albeit apriori sum. 
Discovering patterns in sequence of events has been active area and can viewed in some literature by discovering the 
rule underlying  the generation of given sequence in order to be able to predict a plausible sequence continuation and 
even interesting in finding all common patterns embedded in a database of sequences of sets events.  

 

2.1 MINING SEQUENTAIL PATTERNS 

The following five phases proposed by Rakesh et al. [9] were briefed. 
1. Sort Phase. The database (D) is sorted, with customer-id as the major key and transaction-time as the minor key. 
This step implicitly converts the original transaction database into a database of customer sequences. 
2. Litemset Phase In this phase Rakesh et al. [9] find the set of all Litemsets L. they  are also simultaneously finding 
the set of all large l-sequences, since this set is just {(l) | l  L}. 
The problem of finding large item sets in a given set of customer transactions, albeit with a slightly different 
definition of support. The support for an itemset has been defined as the fraction of transactions in which an itemset 
is present, whereas in the sequential pattern finding problem, the support is the fraction of customers who bought the 
itemset in any one of their possibly many transactions. The main difference is that the support count should be 
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incremented only once per customer even if the customer buys the same set of items in two different 
transactions.[15] 

Table 2.1: Customer-sequence database 
 
 
 
 
 
 

 
 

Table 2.2: Frequent positive sequential patterns 
 
 
 
 
 

The set of Litemsets is mapped to a set of contiguous integers. In the example database given in Table 1.3, the large 
itemsets are (30), (40), (70), (40 70) and (90). The reason for this mapping is that by treating Litemsets as single 
entities, we can compare two Litemsets for equality in constant time, and reduce the time required to check if a 
sequence is contained in a customer sequence. 

 
3. Transformation Phase. It is need to repeatedly determine which of a given set of large sequences are contained 
in a customer sequence. To make this test fast, we transform each customer sequence into an alternative 
representation.  
In a transformed customer sequence, each transaction is replaced by the set of all itemsets contained in that 
transaction. If a transaction does not contain any Litemset, it is not retained in the transformed sequence. If a 
customer sequence does not contain any Litemset, this sequence is dropped from the transformed database. 
However, it still contributes to the count of total number of customers. A customer sequence is now represented by a 
list of sets of Litemsets. Each set of Litemsets is represented by {I1, I2, I3…...In}, where Ii is a Litemset. 
This transformed database is called DT. Depending on the disk availability, we can physically create this transformed 
database, or this transformation can be done on-the-fly, as we read each customer sequence during a pass. The 
transformation of the database in Fig. 2 is shown in Fig. 5. For example, during the transformation of the customer 
sequence with Id 2, the transaction (10,20) is dropped because it does not contain any Litemset and the transaction 
(40 60 70) is replaced by the set of Litemsets {(40), (70), (40 70)). 

 
4. Sequence Phase. Use the set of Litemsets to find the desired sequences.  

5. Maximal Phase. Find the maximal sequences among the set of large sequences, this phase is combined with the 
sequence phase to reduce the time wasted in counting non maximal sequences. Having found the set of all large 
sequences S in the sequence phase, the following algorithm can be used for finding maximal sequences. Let the 
length of the longest sequence be n. Then,  

For (k = n; k > 1; k--) do 

Customer id Customer sequence 
1 {(30)(90)} 
2 {(10,20)(30)(40,60,70)} 
3 {(30,50,70)} 
4 {(30)(40,70)(90)} 
5 {(90)} 

Sequential patterns with support>25% 
{(30)(90)} 
{(30)(40,70)} 
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For each k-sequence Sk does 
De1ete from S all subsequences of Sk 

2.2 EXTRACTION OF NEGATIVE ASSOCIATION RULES 

As stated by Olena Daly et.al [8] about Exception Rules Mining Based on Negative Association Rules is explained 
as follows. Association rule is an implication of the form X=>Y, where X and Y are database 
Itemsets. The example could be supermarket items purchased together frequently. Two measures have been 
developed to evaluate association rules, which are support and confidence. Association rules with high support and 
confidence are referred to as strong rules  
Negative association rule is an implication of the form X=>~Y, ~X=>Y, ~X=>~Y, where X and Y are database 
itemsets, ~X, ~Y are negations of database items. Negative association rules consider both presence and absence of 
items in the database record and mine for negative implications between database items.[14]  

2.2.1 EXCEPTION RULES 

In association rules mining only the rules with high support and high confidence are considered as interesting rules. 
The generated patterns represent the common trends in the databases and are valuable for the marketing campaigns. 
The rules with low support are just as valuable as they may contain unusual, unexpected knowledge about databases. 
Exception rules have been defined as rules with low support and high confidence. A traditional example of 
exception rules is the rule Champagne => Caviar. The rule may not have high support but it has high confidence. 
The items are expensive so they are not frequent in the database, but they are always brought together so the rule has 
high confidence. Exception rules provide valuable knowledge about database patterns.[10] 
In association rules mining user-specified minimum confidence (minconf), minimum support (minsup) is given. 
Association rules with support>=minsup and confidence>=minconf are referred to as strong rules. Itemsets that have 
support at least equal to minsup are called frequent itemsets. Negative itemsets are itemsets that contain both items 
and their negations (for example XY~Z). ~Z means negation of the item Z (absence of the item Z in the database 
record).  
Negative association rule is an implication of the form X=>~Y, ~X=>Y, ~X=>~Y, where X and Y are database 
items, ~X, ~Y are negations of database items. Examples of negative association rules could be Meat=>~Fish, which 
implies that when customers purchase meat at the supermarket they do not buy fish at the same time, or 
~Sunny=>Windy, which means no sunshine implies wind, or ~OilStock=>~PetrolStock, which says if the price the 
oil shares is falling, petrol shares price will be falling too. 
Exception Rules are rules with low support and high exceptionality values. In case of exception rules in association 
mining the confidence measure is not applicable to evaluate the exception rules. For example, we obtain a strong 
rule A=>B and would like to evaluate a potential exception rule A=>Not B. The strong rule A=>B has high 
confidence, implying that A=>Not B cannot have high confidence. Let us say the minimum confidence is 60%. The 
strong rule A=>B satisfies the minimum confidence constraint, so at least 60% of database records containing A also 
contain B. It means that maximum 40% records containing A do not contain B. The exception rule A=>Not B has 
maximum 40% confidence. As confidence is not applicable for evaluating exception rules, we propose a special 
measure exceptionality to evaluate the exceptions. 
 

2.2.2 EXCEPTIONS IN NEGATIVE SENSE 

As stated by Olena Daly et.al [8] that in order to obtain steady patterns of items occurred frequently is based on the 
mining the positive and negative association rules. Let us say X and Y are database items and  
X 
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Are frequent XY is frequent …….. (1) 
Y                                                                     
X=>Y high confidence 
Also we obtain that 
X~Y 
or   is infrequent ……….(2) 
~XY 
So we have a strong association rule (1), and we make sure that (2) are infrequent. (1) and (2) are our premises to 
check if one of the rules (3) has a high exceptionality, which would prove it is an exception in negative sense. 
X=>~Y 
or   if high exceptionality then Exception (3) 
~X=>Y 

Example 
Consider two oil companies X and Y. Their stock normally goes up at the same time: X=>Y In the case when their 
shares do not go up at the same time X=>~Y we call the rule X=>~Y an exception if X~Y is infrequent and has high 
exceptionality measure.[13] 
 

2.2.3 EXCEPTIONS IN POSITIVE SENSE 

As stated by Olena Daly et.al [8] that in order to obtain steady patterns of items occurred frequently is based on the 
mining the positive and negative association rules. Let us say X and Y are database items and  
X 

Are frequent X~Y is frequent …… (1) 
Y 
X=>~Y 
Or   has high confidence……. (2) 
~Y=>X 
Also we obtain that 
XY is infrequent (2) 
We have a strong negative association rule (1), and we make sure that (2) is infrequent. (1) And (2) are our premises 
to check if one of the rules (3) has a high exceptionality, which would prove it is an exception rule in positive sense. 
X=>Y 
Or   if high exceptionality then Exception (3) 
Y=>X 
Example 
Consider two oil companies X and Y. Their stock never goes up at the same time: X=>~Y In the case when their 
shares do go up at the same time X=>Y we call the rule X=>Y an exception if XY is infrequent and has high 
exceptionality measure. 

2.2.4 ALGORITHM FOR MINING EXCEPTION RULES 

Association rules are generated from frequent itemsets satisfying high confidence constraint. The confidence 
calculation is a straightforward procedure after all frequent 
Itemsets have been generated. We do not consider the confidence calculation as it is easy and conceptually proven 
correct. The input of the exception rules mining algorithm are frequent 1-itemsets. The output of the algorithm is 
exceptional itemsets. Exceptional itemsets will become exception rules after the confidence of association rules has 
been checked. They generate frequent itemsets and on each step k (k is the length of the itemset). They check the 
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conditions (1), (2) from sections 2.2.2 and 2.2.3 and if they hold true, we check the exceptionality values for 
candidate exceptions.  

2.3 SINGLE MINIMUM SUPPORT APPROACHES 

In earlier data mining algorithms such as apriori, apriori sum used single minimum support to mine the frequent 
patterns by giving equal importance to each item occurred in database.  The following are some algorithms where 
single minimum support is used.

2.3.1 APRIORI ALGORITHM 

The Apriori algorithm employs an iterative level-wise search for generating frequent item sets. An item set is a set 
of items. A candidate k-item set refers to an item set having ‘k’ number of items and frequent k-item set refers to 
subset of candidate k-item sets whose support is greater than or equal to user specified min sup. The Apriori 
algorithm repeats the steps from (i) to (iii) starting with k=1 till no more frequent item sets are found [6]: 
(i) Ck is generated.  
(ii) Lk is generated from Ck by pruning the item sets whose support is greater than min sup value.  
(iii)  Ck+1 are generated by joining Lk with itself.  

2.4 MULTIPLE MINIMUM SUPPORT APPROACHES 

To avoid the rare item problem and to improve the performance of extracting frequent itemsets involving rare items, 
an approach known as Multiple Minimum Support approach. 

2.4.1 RARE ITEM PROBLEM 

In many applications, some items appear frequently in the data, while others appear rarely. If the frequencies of 
items vary a great deal, we will encounter the dilemma called as the rare item problem. If minsup is set too high, we 
will not find those sequential patterns that involve rare items in the data. If minsup is set too low in order to find 
sequential patterns that involve both frequent and rare items, it will cause combinatorial explosion because those 
frequent items will be associated with one another in all possible ways and many of them are meaningless. In order 
to deal with the rare item problem, we put forward a multiple minimum supports based model for mining sequential 
pattern. In this model, we can specify a different minimum item support for each item. 
To avoid the rare item problem there are so many algorithms used the multiple minimum support approach some of 
them are explained below. 

2.4.2 MS APRIORI 

In this approach, each item is assigned with a minsup value known as “Minimum Item Support” (MIS) and frequent 
itemsets are generated if an itemset satisfies the lowest MIS value among the respective items. The MIS value is 
assigned to each item equal to a percentage of its support. For every item ij  I, the MIS (ij) is calculated as per 
below equation. [3] 

MIS (ij) = S (ij)), if S (ij) > LS  
                                                            = LS else 

where,  is a user-specified proportional value which can be varied between 0 to 1, S(ij) refers to support of an item 
equal to f(ij)/N, (f(ij) represents frequency of ij and N is the number of transactions in a transaction dataset) and LS 
corresponds to user-specified least support value. 
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MSApriori suffers from the following problems.  
1) If  is set high, it can be observed that MIS for rare items will be relatively more close (almost equivalent) 
to their supports as compared with frequent items. As a result, itemsets containing rare items fail to satisfy the 
support of (lowest MIS) rare item in that itemset. So, frequent itemsets involving rare items are missed. 
2) To facilitate participation of rare items, MIS for the rare items have to be less than their support values. It 
can be achieved by setting low  value. However, this may cause frequent items to set very low MIS values. With 
low MIS values for frequent items, the items will be associating with one another in all possible ways, thereby 
generating. 

2.4.2 RELATIVE SUPPORT APRIORI ALGIRITHM (RSAA) 

Relative Support Apriori Algorithm (RSAA) has been proposed [5] for discovering frequent itemsets involving both 
frequent and rare items. In discovering frequent itemsets, RSAA uses three user specified measures: first support s1, 
second support s2 (s1 > s2) and relative support Rsup. Items having support greater than or equal to s1 are considered 
frequent items and the items having support less than s1 and greater than or equal to s2 are considered as rare items. 
If an itemset contains only frequent items, it has to satisfy s1 to be a frequent itemset. If an itemset contains rare 
items, its support has to satisfy s2 and its Rsup should satisfy user specified minimum relative support mRsup to be a 
frequent itemset. The main issue in this algorithm is providing values to these parameters for the given dataset. [3] 

2.4.3 SUPPORT DIFFERENCE APPROACHES 

Support difference (SD) refers to the acceptable deviation of an item from its frequency (or support) so that an 
itemset involving that item can be considered as a frequent itemset. For each item ‘ij ’, calculation of minsup known 
as minimum item support (MIS (ij)) is as follows: 

                    MIS (ij) = S (ij)  SD when (S (ij)  SD) > LS 
= LS otherwise 

Where, S (ij) refers to support of item ‘ij’ and LS refer to the user-specified least support. Using SD, MIS for the 
items range from (- , + ). To prevent MIS values of the items in reaching 0 or lower, we use concept of least 
support (LS). Least support refers the lowest minimum support an item or itemset should satisfy to become a 
frequent itemset. The LS takes a value in the range [0%, 100%]. For a given dataset, the value of SD can be 
calculated as per below equation. 
        SD =  (1  ) 
Where  represents the parameter like mean, median, mode, maximum support of the item supports and  is the 
parameter ranging between 0 and 1. SD takes values from (0, ).  
1) If  = 0 then SD = . Higher the SD value, minimum supports for the items will be relatively less than their 
corresponding supports. 
 2) If  = 1 then SD = 0. When SD = 0, minimum support for an item is equivalent to their corresponding support 
values. 
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