
 An Empirical Study of Agile Software Development
Ajay Deep

Assistant Professor, Department of Information Technology, OITM, Hisar
er.ajaydeep@gmail.com

Abstract--For Developing software there are two main

methodologies: the traditional sequential or “the waterfall method”

and the iterative or “The Agile Method”. In this paper we emphasis

on Agile Manifesto and its principles. It provides the general

understanding of Agile Software Development and can act as a

foundation for choosing methodology for the software projects as we

have compared different methods and listed their Applicability and

Limitations.

Index Terms--Agile, Agile manifesto, Principle of Agile manifesto,

Usability, Waterfall Method.

I. INTRODUCTION

The agile methods analyzed and reported in this paper are

those consistent with the Manifesto for Agile Software

Development. Now a day, software project management is

becoming more and more important since a project needs an

organized plan to follow through. There are two famous

process models in this area, which are the traditional

Waterfall Process Model and the Agile Software

Development.

The Agile software development techniques are gradually

being accepted as viable alternative to traditional software

development methodologies. It leads to better quality

software in a shorter period of time.

a) WATERFALL MODEL

In Royce's original waterfall model, the following phases are

followed in order: Analysis, Requirements Specification,

Design, Implementation, Testing and Integration, Operation

and Maintenance. The waterfall model proceeds from one

phase to the next in a sequential manner. For example, one

first completes requirements specifications, which after sign-

off are considered "set in stone". When requirements are

completed, one proceeds to design. The software in question

is designed and a blueprint is drawn for implementers

(coders) to follow—this design should be a plan for

implementing the requirements given. When the design is

complete, an implementation of that design is made by

coders. Towards the later stages of this implementation phase,

separate software components produced are combined to

introduce new functionality and reduced risk through the

removal of errors

Figure1: Waterfall Model

b) AGILE MODEL

Adaptable software creation, also known as agile software

development. Agile development is a style of software

development that emphasizes customer satisfaction through

continuous delivery of functional software. Based on a variety

of iterative development disciplines including extreme

programming (X), agile methods put developers to work in

small teams to tight budgets and short timescales. In contrast

to traditional software development methods, agile developers

liaise continuously with business clients, aiming to deliver

working software as frequently as every two weeks during a

project, and welcome changes to the requirement in response

to evolving business needs. The concept of the Waterfall

Process Model is that the requirement analysis has to be done

in the beginning phase, whereas, the Agile Software

Development emphasizes that the requirement is changeable

throughout the process. Thus, it seems that using the Agile

Software Development is becoming a trend for software

development companies in order to improve the software

process.

Agile is a group of software engineering methodologies, e.g.

extreme programming , Scrum , Cr ystal that aim to increase

International Journal of Latest Trends in Engineering and Technology (IJLTET)

Vol. 1 Issue 1 May 2012 35 ISSN: 2278-621X

overall software developer productivity, deliver working

software on time, and minimize the risk of failure in software

projects. Software is developed through short time boxed

cycles, typically of one to four weeks in duration, known as

iterations. Each iteration is, a mini-software project

encompassing planning, requirements analysis, design,

coding, and testing. The output is working software that

integrates successfully with the working software developed

in the preceding iteration. Software is released after a series

of iterations, typically every few months.

II. Agile Manifesto

The Agile Manifesto stresses the importance of:-

 a) People and interactions over processes and tools,

b) Working software instead of detailed documentation,

c) Active customer participation and involvement rather than

time and effort expended on negotiating contracts, and

d) Willingness and ability to take on changes over steadfast

commitment to a static plan.

Agile software development methods including eXtreme

Programming (XP), Scrum, Adaptive Software Development

and Feature-Driven Development are based on the principles

of the Agile Manifesto and geared towards realizing its goals

and objectives. In general, the feedback from organizations

that have implemented agile development is positive.

a) Principles of Agile Manifesto

The values described above are realized in the principles of

Agile Manifesto. The principles are the following:

Our highest priority is to satisfy the customer through early

and continuous delivery of valuable software.

Welcome changing requirements, even late in

development. Agile processes harness change for the

customer's competitive advantage.

Deliver working software frequently, from a couple of

weeks to a couple of months, with a preference to the shorter

timescale.

Business people and developers must work together daily

throughout the project.

Build projects around motivated individuals. Give them the

environment and support they need, and trust them to get the

job done.

The most efficient and effective method of conveying

information to and within a development team is face-to-face

conversation.

Working software is the primary measure of progress.

Agile processes promote sustainable development. The

sponsors, developers, and users should be able to maintain a

constant pace indefinitely.

Continuous attention to technical excellence and good

design enhances agility.

The best architectures, requirements, and designs emerge

from self-organizing teams.

At regular intervals, the team reflects on how to become

more effective, then tunes and adjusts its behavior

accordingly.

b) Background and values of Agile Manifesto

Agile Alliance was formed when seventeen representatives of

different agile methods, such as Extreme Programming (XP),

Scrum and Crystal Family, met to discuss alternatives to

rigorous, documentation driven software development. Agile

Alliance did not want to specify detailed project tactics mainly

because the members represent competing companies but

rather agree on values that support agile or lightweight

software development at a high level. Thus, Agile Manifesto is

a collection of values and principles, which can be found in the

background of the most agile methods. Agile Alliance

describes its intentions as follows:

“Agile movement is not anti-method, in fact, many of us want

to restore credibility to the word method. We want to restore

a balance. We embrace modeling but not in order to file some

diagram in a dusty corporate repository. We embrace

documentation but not hundreds of pages of never-

maintained and rarely used tomes. “

Agile Alliance formulated their ideas into values and further

to twelve principles that support those values. Values of

Agile Manifesto are the following:

• Individuals and interactions over processes and tools

• Working software over comprehensive documentation

• Customer collaboration over contract negotiation

• Responding to change over following a plan

c) Key Ideas for Agile Software Development

Methodologies

The keys for successful use of choosing and using agile

methodologies are summarized:-

Agile methods are a subset of iterative and evolutionary

methods. Iterations are short to provide for more timely

feedback to the project team.

The Agile Manifesto documents the priorities that underlie

the principles and practices of agile software development

methodologies.

Extreme Programming is based upon four values and 12

specific software development practices.

The Crystal family of methodologies is customizable based

upon the characteristics of the project and the team.

Scrum mainly deals with project management principles.

The methodology allows the team freedom to choose its

specific development practices.

 FDD methodology has the most thorough analysis and

design practices.

III. The Agile Project Lifecycle

As mentioned, the Agile Development Framework is an

iterative, incremental, and collaborative methodology for

software development project. The Figure shows that the

Agile Software Development Lifecycle (ASDL) starts from

an initial plan and ends with deployment. Each iteration

consists of planning, requirements, analysis and design,

implementation, deployment, testing, and evaluation.

International Journal of Latest Trends in Engineering and Technology (IJLTET)

Vol. 1 Issue 1 May 2012 36 ISSN: 2278-621X

Figure 2 Agile Project Life Cycles.

The Agile Software Development was developed to solve the

Waterfall’s weakness. Differing from the Waterfall Process

Model, the Agile Software Development emphasizes its

flexibility. For example, requirements are allowed to change

in an agile project. A face to face communication also takes

an important place in the Agile Software Development since

it requires a quick feedback.

a) General Understanding of the Agile Software

Development

Generally, agility is defined by ability which is able to be

flexible and adaptable to change. The idea of the Agile

Development Framework is to create a pain-free working

environment for those small, co-located, self-organized teams

in order to assist companies to take full advantage of the

customer value of the delivered software product.

On an Agile project, developers work closely with their

customers to understand their needs, they are placed in a pair

to implement and test their solution, and the solution is shown

to the customers for quick feedback. Therefore, the business

contract will not become a barrier between customers and

developers, but a platform to help customers and developers

work together.

Moreover, the Agile Software Development is the work of

energizing, empowering, and enabling project teams to

rapidly and reliably deliver business value by engaging

customers and continuously learning and adapting to their

changing needs and environments.

In the Agile Development Framework, user requirements are

written from users’ perspective, elaborating on what users

want to do with a feature of the software. The concept of the

Agile Software Development can be summarized as below:

Eliminate Waste: The Agile Development Framework

advocates a “barely sufficient” approach to plan, process, and

control software development process. “Barely sufficient”, in

other words, is to find the simplest things to meet needs of

requestor instead of wasting unnecessary resources.

Sustainable Pace: The Agile Development Framework

requires a daily meeting. All team members have to report

what they have accomplished and what they are going to do

in the meeting so that the progress of the project can be

traced.

Intense Collaboration: Unlike the traditional approach,

which relies on documents, the Agile Development

Framework requires a daily face to face communication with

customers and coworkers to understand and fulfill their

requirements.

Frequent Delivery: Frequent delivery offers incremental

business value to customers. Customers experience the

growth of the system and obtain additional insight to how

requirements are planned by interacting with the system early.

Thus, frequent delivery is one important way to seek feedback

on the quality of the application.

Continuous Feedback: The Agile Development Framework

was invented to achieve customer’s value. Thus, continuous

feedback is demanded in order to inspect if the development

team is well aligned with business objectives.

Include Change: Differing from the traditional approach,

change of requirements is considered in the Agile

Development Framework since remaining adaptable is a key

to building a trusting relationship with customers.

Furthermore, prioritizing features, exploring and explaining

risk help both of team members and customers understand the

consequence of change.

Empowerment: The Agile Development Framework also

pays attention to the team working atmosphere. It is very

important to set up a well organized and positive team.

Therefore, encouraging team members is highly required.

Iterative and Incremental development: plans,

requirements, design, implementation, deployment and testing

are developed incrementally through iterations. Each iteration

usually takes two to four weeks. Moreover, problem hunting,

scope solving, feedback collection should be done at the end

of each iteration. In addition, features and tasks are also

inspected and tracked within each iteration.

Figure 3: Iteration in the Agile Development Framework.

Establish and Changing Requirements: In traditional

software development process model, identification and

analysis of requirements for the system are documented

within an agreement for customers and the development team

in an early phase of a project. Once this agreement has been

reached, the requirements are not allowed to change. In

contrast, the Agile Development Framework allows both

customers and developers to change the requirements

throughout the project, but only the customers have the

authority to approve, disapprove and prioritize the ever

changing requirements. In addition, the requirements can be

International Journal of Latest Trends in Engineering and Technology (IJLTET)

Vol. 1 Issue 1 May 2012 37 ISSN: 2278-621X

reprioritized anytime. Once the priority changed, the new

higher requirement will be pulled up to the top of the stack.

Use Backlog: In the Agile Development Framework, tasks

are divided into small chunks (also known as backlogs) to

manage complexity and to get quick feedback.

Prioritize Backlog: In an Agile team, backlogs are prioritized

by customers and only higher prioritized backlogs (top 2 or 3)

will be processed in iteration. Once the backlog prioritizing

works are done, the prerequisites for calling the first Sprint

Planning Meeting will be embraced. Moreover, unfinished

backlogs are inspected and reprioritized at the end of each

iteration in order to decide which backlogs will be processed

in the next iteration.

Face to Face Communication: The Agile Development

Framework emphasizes face to face communication. It

promotes holding a short daily meeting. In the meeting, team

members have to report their project progress.

Pairing Programmer & Self Organization: In an Agile

team, a less experienced programmer is paired with an

experienced one in order to share knowledge and teach each

other. Moreover, each Agile team is self organized. Team

members are self organized by accomplishing tasks with their

co-works from backlogs.

IV. Limitations of Agile Processes

The assumptions listed above do not hold for all software

development environments in general, nor for all “agile”

processes in particular. In this part I describe some of the

situations in which agile processes may generally not be

applicable. It is possible that some agile processes fit these

assumptions better, while others may be able to be extended

to address the limitations discussed here. Such extensions can

involve incorporating principles and practices often

associated with more predictive development practices into

agile processes.

a)Limited support for distributed development

environments:

The emphasis on co-location in practices advocated by agile

processes does not fit well with the drive by some industries

to realize globally distributed software development

environments. Development environments in which team

members and customers are physically distributed may not be

able to accommodate the face-to face communication

advocated by agile processes.

b)Limited support for subcontracting:

Outsourcing of software development tasks to subcontractors

is often based on contracts that precisely stipulate what is

required of the subcontractor. Subcontracted tasks have to be

well-defined in the cases where subcontractors have to bid for

the contract. In developing a bid a subcontractor will usually

develop a plan that includes a process, with milestones and

deliverables, in sufficient detail to determine a cost estimate.

Figure 4: Process of Agile requirements change

management.

c)Limited support for building reusable artifacts:

Agile processes such as Extreme Programming focus on

building software products that solve a specific problem.

Development in "Internet time" often precludes developing

generalized solutions even when it is clear that this could

yield long-term benefits. In such an environment, the

development of generalized solutions and other forms of

reusable software (e.g., design frameworks) is best tackled in

projects that are primarily concerned with the development of

reusable artifacts.

d)Limited support for development involving large

teams:

Agile processes support process "management-in-the small"

in that the coordination, control, and communication

mechanisms used are applicable to small to medium sized

teams. With larger teams, the number of communication lines

that have to be maintained can reduce the effectiveness of

practices such as informal face-to-face communications and

review meetings. Large teams require less agile approaches to

tackle issues particular to "management-in-the-large".

Traditional software engineering practices that emphasize

documentation, change control and architecture-centric

development are more applicable here.

e)Limited support for developing large, complex

software:

The assumption that code refactoring removes the need to

design for change may not hold for large complex systems in

particular. In such software, there may be critical architectural

aspects that are difficult to change because of the critical role

International Journal of Latest Trends in Engineering and Technology (IJLTET)

Vol. 1 Issue 1 May 2012 38 ISSN: 2278-621X

they play in the core services offered by the system. In such

cases, the cost of changing these aspects can be very high and

therefore it pays to make extra efforts to anticipate such

changes early. The reliance on code refactoring could also be

problematic for such systems. The complexity and size of

such software may make strict code refactoring costly and

error-prone.

Figure 5: The Axis of Agility

V. Traditional vs. Agile Software Development Methods

Throughout the literature we have consulted, a clear

distinction between traditional and agile software

development methods is made. My analysis found that a

typical traditional method tells the developers pass through

several phases in a prescriptive manner, phases conceived out

of a plan based on the requirements specifications of the

customer. Security in and stability of the project is therefore

emphasized and extensive documentation is encouraged. An

agile method on the other hand puts virtually all of the above

in second place to complete flexibility and customer

collaboration. Developers are agile as to being responsive to

changing needs of the customers. Prototypes and beta

versions are delivered constantly to the end users who in turn

report back with changes that have to be made and wishes for

additional functionality. The well-being of the development

team also has a strong focus in agile software development.

To illustrate the somewhat varying degree of agility in all

discussed software development methods, an “Axis of Agility”

is created where the methods relative placing are shown on a

one-dimensional scale with the non-existent extremes of

traditional and agile values at each end of the barometer. This

Axis of Agility depicts subjective feelings for how each of the

methods stands in relation to each other with regard to these

values.

Finally, in order to summarize the characteristics of the

traditional and the agile software development methods, we

once again turn to the agile values which truly captures the

essence of what agile software development methods, relative

traditional software development methods, are all about.

VI. Applicability of Agile software development methods

a)Where to use Agile Development

Agile Management & development methods are used under

the following circumstances:

i) The customers/users are active participants in requirements

and/or analysis modeling efforts

ii)Changing requirements are welcomed and acted upon

accordingly – there is no “requirements freeze”

iii) While working on the highest priority requirements first,

as prioritized by our project stakeholders, and in turn

focusing on highest risk issues as work progresses

iv) The content of models is recognized as being

significantly more important than the

format/representation of that content.

b)Where not to use Agile Development

Agile development methods aren’t used under the following

circumstances:

i) When goal is to produce documentation, such as a

requirements document, for sign-off by one or more

project stakeholders

ii)While using a case tool to specify the architecture and/or

design of our software BUT not using that specification

to generate part or all of our software

iii) When customers/users have limited involvement with our

efforts. For example they are involved with initial

development of requirements, perhaps are available on a

limited basis to answer questions, and at a later date will

be involved in one or more acceptance reviews of our

work

VII. CONCLUSIONS

This paper aims for the identification of factors that help to

decide for Agile or traditional project management

methodologies in different types of projects. The following

are the characteristics of the project which would benefit

significantly if done with agile methodologies:

a) Poorly defined requirements

b) High level of complexity

c) Risk of failure is high

d) High development platform flexibility

Also several other factors were identified:

a) High risk tolerance of the project champion

b) High programmer experience with chosen development

platform

c) High end-user ability to adopt to change

d) High budget elasticity

In comparison with Agile it was found that projects with high

resource count and sub-contract development benefit more

from traditional methodologies.

Theoretical Implications: - This paper aimed at finding out

when does agile methodologies work best and when they do

not work, hence it is better to do project with traditional

methodologies. From the above it is possible to see that the

following groups of attributes are influential for the selection

Agile versus traditional methods: Requirements, project risk,

team and development process characteristics. These groups

International Journal of Latest Trends in Engineering and Technology (IJLTET)

Vol. 1 Issue 1 May 2012 39 ISSN: 2278-621X

include different factors within them which need to be

accessed prior to selection of methodology.

Managerial Implications: - Main implication of this paper is

that it provides a foundation for choosing methodology for

the software projects. As it has been mentioned previously a

choice of methodology may make or break the project.

Project characteristics identified for the Agile project are not

complete and there are many more which need to be taken

into account. However if project does not have many of those

characteristics it may be better to do it using traditional

methodologies. Agile methods are quite complicated in

comparison with traditional ones, thus for some projects they

may be too excessive.

Future Research

The paper shows that agile software development methods

requires a lot of skill and effort from those who use them.

This may lead to that teams consisting of mainly

inexperienced developers cannot fully reap the benefits of

these methods thus leaving them dissatisfied with their choice

of software development method. There may be reason for

dissatisfaction among users of certain methods is that why a

method may fail to satisfy a specific organization and succeed

in another.

Another interesting aspect to be studied is , no or low

customer participation would mean that Agile would not work

at all, while low complexity would still mean that Agile could

be used with this project.

VIII. REFERENCES

[1] Rashina Hoda, James Noble, Stuart Marshall: “The

Impact of Inadequate Customer Collaboration on Self-

Organizing Agile Teams”, 2010

[2] Maarit Laanti, Outi Salo, Pekka Abrahamsson: “Agile

methods rapidly replacing traditional methods at Nokia:

A survey of opinions on agile transformation”, 2010

[3] Subhas Chandra Misra , Vinod Kumar, Uma Kumar:

“Identifying some important success factors in adopting

agile software development practices”, 2009

[4] agile. (2009). "Cambridge Advanced learner's Dictionary

Online." Retrieved 09/12/2009.

[5] Helen Sharp, Hugh Robinson, Marian Petre: “The role of

physical artefacts in agile software development: Two

complementary perspectives”, 2009

[6] Simona Motogna, I. Laz˘ar, B. Pârv, I. Czibula: “An

Agile MDA Approach for Service-Oriented

Components”, 2009

[7] Ambler, S. (2008a). "Acceleration: An Agile

Productivity Measure " Retrieved 08/12/2009.

[8] Ambler, S. (2008b). "Results from Scott Ambler’s

February 2008 Agile Adoption Survey."

[9] Frank K.Y. Chan, James Y.L. Thong: “Acceptance of

agile methodologies: A critical review and conceptual

framework”, 2008

[10]Woi Hin, Kee: “ Future implementation and integration

of agile methods in software development and testing”,

2006

[11]Beck, K., and Fowler, M. Planning Extreme

Programming, Boston: Addison Wesley, 2001. Bossi, P.,

and Cirillo, F. “Repo Margining System: Applying XP in

the Financial Industry,” in Proceedings of the 2nd

International Conference on eXtreme Processing and

Agile Processing Software Engineering (XP 2001),

Villasimius, Italy, May 2001.

[12]Cockburn, A. & Highsmith, J. 2001. Agile Software

Development: The People Factor. Computer, Vol. 34,

No. 11, pp. 131.133.

[13]Highsmith, J. (2000). Adaptive Software Development: a

Collaborative Approach to Managing Complex Systems,

Dorset House Publishing Co., Inc.

[14]Boehm, B. 1988. A Spiral Model of Software

Development and Enhancement. Computer, Vol. 21, No.

5, pp. 61.72.

[15]Boehm, B. (1981). Software Engineering Economics,

Prentice-Hall.

[16]Erickson, J. & Lyytinen, K. 2005. Agile Modelling,

Agile Software Development, and Extreme

Programming: The State of Research. Journal of

Database Management, Vol. 16, No. 4, pp. 88.100.

[17]Highsmith, J. 2004. Agile Project Management, Creating

innovative products. Addison-Wesley.

[18]Cohen, D., Lindvall, M. & Costa, P. 2004. An

Introduction to Agile Methods. Elsevier Academic Press.

0-12-012162 2-67.

[19]Larman, C. (2004). Agile and Iterative Development:A

Manager's Guide. C. Alistair and H. Jim, Pearson

Education, Inc.

[20]Larman, C. and V. R. Basili (2003). "Iterative and

Incremental Development: A Brief History." IEEE

Computer Society 36(6):

[21]Cohn, M. & Ford, D. 2003. Introducing an Agile Process

to an Organization. IEEE Computer, Vol. 36, No. 6, pp.

74.78.

[22]Anderson, D. J. 2003. Agile Management for Software

Engineering, Applying the Theory and Constraints for

Business Results. Prentice Hall.

International Journal of Latest Trends in Engineering and Technology (IJLTET)

Vol. 1 Issue 1 May 2012 40 ISSN: 2278-621X

