
PREDICTING COMPRESSIVE STRENGTH OF CONCRETE 

CONTAINING TERNARY COMBINATION OF INDUSTRIAL BY-

PRODUCTS AS PARTIAL REPLACEMENT OF CEMENT AND 

FINE AGGREGATES USING ANN AND ANFIS 
 

Varinder Kumar Bansal
1
, Maneek Kumar

2
, Prem Pal Bansal

3
, Ajay Batish

4
 

 

1. INTRODUCTION 

Today, concrete is one of the most widely used construction material composed of binding material like cement, fine and 

coarse aggregates. The construction cost is becoming very high due to the shortage of natural ingredients which provide 

volume to concrete like sand and aggregates and the high cost of concrete. There is a need for alternate material that matches 

the properties of cement and natural sand in concrete. This problem can be solved by partial replacing cement and sand with 

industrial waste. Such waste includes fly ash, ladle furnace slag, copper slag, electric arc furnace slag, iron slag, glass powder 

and others. The usage of these as partial replacement material reduces the amount of Portland cement and sand needed for 

concrete. This also reduces both energy and impact of CO2 on the environment and helps in improving the workability and 

long-term properties of concrete. The utilization of such materials in concrete not only makes it economical but also helps in 

reducing the disposal problems. These industrial by-products possess sufficient cementitious and pozzolanic properties which 

make them an excellent alternative material for partial replacement of cement and sand [1-4].Several studies have been 

reported in the literature that justifies the use of these alternate industrial wastes as replacement of sand and cement. A 

comprehensive review of literature shows that there have been several studies that report the effect of industrial waste on 

compressive strength, however many of these industrial by-products have not been used in ternary combinations as partial 

replacement of cement and sand, but some researchers have used some industrial by-products in binary combinations as 

partial replacement of cement and sand. 

Adolfsson et al. [5] investigated the hydraulic characteristics of ladle furnace slag (LFS) as a substitute for cement for some 

applications. LFS contains a high content of calcium aluminates and the hydration of different calcium aluminates in water 

results in the formation of hydrates such as C2AH8, C4AH13, CAH10 and C3AH6 which give strength to the material. Devi 

et al. [6] have reported that there is an increment in compressive strength of concrete by 27.04% in which sand was replaced 

by 40% steel slag. Papayianni et al. [7] used high-calcium fly ash and LFS as the binder and electric arc furnace slag (EAF) 

as aggregate. The produced concrete showed high-strength (>70 MPa) in case of 100% replacement of the coarse and 50% 

replacement of the fine aggregate by EAF. Chidiac et al. [8] studied the use of glass powder in high strength concrete and 
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Abstract- Compressive strength of concrete is one of the important mechanical properties of the concrete and most essential 

factor for the quality assurance of concrete.  This paper presents three different data-driven models, i.e. Taguchi, artificial 

neural network (ANN) and ANFIS to predict the compressive strength of concrete containing ternary combinations of 

industrial by-products as partial replacement of cement and fine aggregates. Cement was partially replaced with fly-ash, ladle 

furnace slag and copper slag at 10%, 25% and 40% level and fine aggregate was partially replaced by electric arc furnace slag, 

iron slag and glass powder at 20%, 30% and 40% level. The water to binder ratio was fixed at 0.40, 0.44 and 0.48 and the 

curing age was fixed at 7, 28 and 90 days. An L9 Taguchi orthogonal array was used to design the experiments for four 

parameters at three levels giving rise to a total of nine trial experiments for one set of water to binder ratio and curing age. The 

mix constituents were fed as the input parameters to achieve the compressive strength as the target.  Thus a total of 90 datasets 

are used to develop an ANN and ANFIS models to predict the compressive strength having input and output data obtained 

from the laboratory experiments. Results show that the ANFIS model provides better accuracy than the ANN model for 

prediction of the compressive strength of this type of concrete. 

Keywords- Concrete; Compressive strength; Industrial by-products; Artificial neural network (ANN); Adaptive neuro-fuzzy 

inference systems (ANFIS); Taguchi method. 
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found that no ASR was detected even with 25% of the cement replaced with waste glass powder. Ducman et al. [9] 

investigated the feasibility of the refractory concrete production using EAFS as aggregates and the results showed that when 

slag was heated up to a temperature of 1000 °C, prior to its use for refractory concrete, the final product exhibited mechanical 

properties which are comparable to concrete with conventional refractory aggregate, e.g. bauxite. Rashad [10] reviewed from 

the various researchers that the ASR expansion of mortar and concrete specimens containing glass sand can be mitigated by 

adding 10–30% MK, 20–50% FA, 50–60% slag, 10% SF, 1–2% Ni2CO3, 1% LiNO3 and suitable amount of fibers. The 

presence of C3S, C2S and C4AF endorse steel slag having cementitious properties. Huang et al. [11] prepared a cementitious 

material by utilizing phosphogypsum (PG), steel slag (SS), granulated blast-furnace slag (GGBFS) and limestone (LS). The 

results showed that the 28 days compressive strength of a mixture of 45% PG, 10% SS, 35% GGBFS and 10% LS exceeded 

40 MPa and the main hydration products were ettringite and C–S–H gel. Pellegrino et al. [12] found that replacement of fine 

natural aggregates with EAF slag is feasible at lower substitution ratios (Up to 7%). Thomas [13] reviewed in his paper that 

ASR damages can be effectively mitigated by using fly ash and other supplementary cementitious materials (SCM’s) in 

concrete. Adaway et al. [14] replaced fine aggregate with glass powder at 15, 20, 25, 30 and 40% level. The compressive 

strength was found to increase up to a level of 30%, at which point the strength developed was 9% and 6% higher than the 

control after 7 and 28 days respectively. Kothai et al. [15] found that the compressive strength of the concrete increases and 

the optimum value was found at a slag replacement proportion of 30% of fine aggregate and after that, any further 

replacement of slag decreases the compressive strength. Du et al. [16] found that concrete containing up to 100% glass sand 

obtained similar compressive strength to that of the control after 28 days, with 90-days compressive strength increasing with 

glass percentage.  

For the last three decades, different modeling methods based on artificial neural networks (ANN) and Adaptive neuro-fuzzy 

inference systems (ANFIS) have become popular and have been widely used to solve a variety of problems in many areas of 

science and engineering applications. The compressive strength of concrete can be predicted using the models built with 

ANN and ANFIS. Raif et al. [17] predicted the mechanical properties of concrete containing GGBFS and CNI using ANN 

and ANFIS and determined that experimental data can be estimated to a notably close extent via ANN and ANFIS models. 

Atici [18] predicted the strength of mineral admixture concrete containing blast furnace concrete and fly ash using MRA and 

ANN and found that ANN is suitable for calculating nonlinear functional relationships, for which classical methods cannot be 

applied. Chithra et al. [19] constructed models based on artificial neural networks and regression analysis to predict the 

compressive strength of high-performance concrete containing nano-silica and copper slag as partial replacement of cement 

and fine aggregate and concluded that ANN models generated better results. Douma et al. [20] predicted compressive 

strength of self-compacting concrete containing fly ash using fuzzy logic inference system and resulted in the strong potential 

for predicting the compressive strength. Muthupriya et al. [21] developed artificial neural networks for predicting the 

compressive strength of concrete containing metakaolin with fly ash and silica fume and found that ANN has a high potential 

for predicting the compressive strength values of such concrete. Vidivelli et al. [22] presented an ANN-based model to 

predict the compressive strength of concrete containing industrial by-products and concluded that the artificial neural network 

(ANN) performed well to predict the compressive strength of high-performance concrete for various curing period. Saridemir 

[23] developed artificial neural networks and fuzzy logic models for prediction of long-term effects of ground granulated 

blast furnace slag on compressive strength of concrete and found that ANN and fuzzy logic systems have strong potential for 

prediction of long-term effects of ground granulated blast furnace slag on compressive strength of concrete. Chopra et al. [24] 

proposed an ANN model to predict the compressive strength of concrete and found that Levenberg- Marquardt (LM) with 

tan-sigmoid activation function is best for the prediction of the compressive strength of concrete. Gupta [25] presented the 

application of artificial neural network to develop a model for predicting 28 days compressive strength of concrete with 

partial replacement of cement with nano-silica. Topcu et al. [26] developed artificial neural networks and fuzzy logic models 

for predicting the 7, 28 and 90 days compressive strength of concretes containing high-lime and low-lime fly ashes and found 

that ANN and fuzzy logic systems have strong potential for predicting the 7, 28 and 90 days compressive strength of 

concretes containing high-lime and low-lime fly ashes. Naniz et al. [27] developed two Artificial Neural Network (ANN) 

models for predicting the compressive strength of concrete containing Slag and Silica fume, at the age of 7, 28, 90 and 180 

days and found that ANN has strong potential as a powerful tool for predicting 7, 28, 90 and 180 days compressive strength 

values of concretes containing slag and silica fume. 

This study aims to predict the compressive strength of concrete containing industrial by-products in ternary combinations as 

partial replacement of cement and sand by constructing ANN and ANFIS models. The obtained results of compressive 

strength tests for both ANN and ANFIS have been compared with predicted results 

In this study, cement was partially replaced with fly-ash, ladle furnace slag and copper slag each at 10%, 25% and 40% level 

and fine aggregate was partially replaced by electric arc furnace slag, iron slag and glass powder each at 20%, 30% and 40% 

level. The water to binder ratio was fixed at 0.40, 0.44 and 0.48 and the curing age was fixed at 7, 28 and 90 days for each 

level. There are four factors namely (i) percentage of by-product used as binder, (ii) percentage of by-product used as fine 

aggregate, (iii) type of replacement material as a binder and (iv) type of replacement material as fine aggregate. Each factor 

was varied at three levels. Water to binder ratio and curing age was kept constant for all levels. The list of factors and their 

respective levels are shown in Table 1. As per the concept of experimental design, to obtain a relationship of each factor to 

compressive strength, each factor must be varied at least two levels. However, it is difficult to establish a mathematical 
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relationship between only two data points. Thus it was decided to vary each factor at a minimum of three levels. Increasing 

the number of levels at which each factor is varied would have made the experimental work extremely large. With four 

factors varied at three levels each, Taguchi L9 orthogonal array was selected for experimentation. An L9 orthogonal array has 

four columns, and each factor was assigned to of the four columns. L9 allows for 9 trials to be conducted by varying the four 

factors at three levels each. The experimental test strategy during L9 is given in Table 2.   

Using full factorial method the number of experiments comes out to be 729, and to reduce the number of experiments, a 

standard L9 Taguchi Orthogonal Array (OA) was used. Using this methodology, the total experiments have been reduced to 

81 instead of 729 thus considerably saving the time and material. 

 

Table 1: List of factors varied during the experimentation and their levels 

Factors Levels at which varied 

Designation Type 1 2 3 

A 
Percentage  of by-product to be used as 

partial replacement of cement 
10% 25% 40% 

B 
Percentage  of by-product to be used as 

partial replacement of fine aggregate 
20% 30% 40% 

C Type of replacement material as a binder Fly ash (FA) 
Ladle Furnace 

Slag (LFS) 

Copper Slag 

(CS) 

D 
Type of replacement material as Fine 

aggregate 

Electric Arc Furnace 

Slag (EAFS) 
Iron  Slag (IS) 

Glass Powder 

(GP) 

 

Table 2: Experimental test strategy 

 

Experiment 

No 

A 

Percentage  of by-

product to be used as 

partial replacement of 

cement 

B 

Percentage  of by-

product to be used as 

partial replacement of 

fine aggregate 

C  

Type of  

replacement 

material  as a 

binder 

D 

Type of 

replacement 

material as Fine 

aggregate 

Response 

1. 10% 20% Fly ash 
Electric Arc 

Furnace Slag 

For each 

experiment 

compressive 

strength was 

measured 

2. 10% 30% 
Ladle Furnace 

Slag 
Iron  Slag 

3. 10% 40% Copper Slag Glass Powder 

4. 25% 20% 
Ladle Furnace 

Slag 
Glass Powder 

5. 25% 30% Copper slag 
Electric Arc 

Furnace Slag 

6. 25% 40% Fly ash Iron  Slag 

7. 40% 20% Copper Slag Iron  Slag 

8. 40% 30% Fly ash Glass Powder 

9. 40% 40% 
Ladle Furnace 

Slag 

Electric Arc 

Furnace Slag 

 

Each of the experimental plans depicted in Table 2 was completed for three sets of curing age (i.e. 7, 28 and 90 days) and 

three sets of W/B ratio, namely 0.40, 0.44 and 0.48. So in effect, 81 experiments were conducted for this study (9 as depicted 

above for 3 curing ages and another 3 for W/B ratio).  

The compressive strength of concrete is a major and important mechanical property, which is generally obtained by crushing 

the concrete specimen after a specified curing period. Conventional methods of predicting the compressive strength of 

concrete are generally based on Abrams water-cement ratio rule. Several studies have shown that the compressive strength of 

concrete is also influenced by the content of other concrete ingredients such as the use of supplementary cementitious 

materials (SCM's). During this study, modeling methods based on ANFIS and ANN has been used to predict the compressive 

strength of concrete consisting of SCM's. 

 

 

2. MATERIALS 

The details of the properties of materials used in the study are presented in the following sections.  

 

2.1. Cement 
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The cement used in this study was Ordinary Portland Cement of 43 grades conforming to BIS 12269 -1987 [28], with a 

specific gravity of 3.12. 

2.2. Fine and coarse aggregate 

The fine aggregate used in this study was river sand and conforming to grading zone II as per BIS 383-1970 [29]. The fine 

aggregate is characterized by a specific gravity of 2.73, fineness modulus of 2.46 and water absorption of 1.01%. The coarse 

aggregate conforming to BIS 383-1970 [29] used in this study was crushed stone with an optimum mix of 20 mm and 10 mm 

size aggregates having a specific gravity of 2.69 and 2.72 respectively. The fine and coarse aggregates were tested as per BIS 

2386 Part III-1963 [30]. 

 

2.3 Industrial by-products 

Total of six industrial by-products were used in this study. Three industrial by-products namely fly ash, ladle furnace slag and 

copper slag were used as a cement replacement, and the other three industrial by-products namely electric arc furnace slag, 

iron slag and glass powder was used as the sand replacement. All these industrial by-products were locally procured from the 

nearby industries. The Energy Dispersive X-ray Spectroscopy (EDS) and Scanning Electron Microscopy (SEM) tests were 

used to find the chemical composition of these industrial by-products. The physical and chemical properties of these 

industrial by-products are presented in Table 3. 

 

Table 3: Physical properties and Chemical composition of by-products used as a Binder and fine aggregate 

Binder Fine Aggregate 

Copper Slag 
Ladle Furnace 

Slag 
Fly-ash Glass Powder 

Electric Arc 

Furnace Slag 
Iron Slag 

Fineness (% 

retained at 

90µm) 

85 

Fineness 

(% 

retained 

at 90µm) 

20 

Fineness 

(% 

retained 

at 90µm) 

0 
Fineness 

Modulus 
1.5 

Fineness 

Modulus 
1.6 

Fineness 

Modulus 
1.63 

Specific 

gravity 
3.91 

Specific 

gravity 
3.35 

Specific 

gravity 
2.35 

Specific 

gravity 
2.61 

Specific 

gravity 
2.93 

Specific 

gravity 
3.35 

CaO 1.12 CaO 51.33 CaO 0.89 CaO 3.89 CaO 29.92 CaO 0.85 

SiO2 12.27 SiO2 13.98 SiO2 
49.6

5 
SiO2 53.42 SiO2 4.33 SiO2 30.33 

Al2O3 1.65 Al2O3 6.21 Al2O3 
35.5

2 
Al2O3 2.11 Al2O3 24.09 Al2O3 12.40 

FeO 76.66 MgO 1.61 FeO 6.72 MgO 1.86 MgO 13.45 MgO 0.75 

CuO 0.83 CuO 1.31 CuO 2.43 CO2 5.77 CO2 17.46 CO2 34.95 

SO3 0.73 SO3 4.09 SO3 --- K2O 7.41 

∑ TiO2+ 

SO3+ MnO 

+ Cr2O3 

--- TiO2 0.60 

K2O 0.28 K2O --- K2O 1.09 Na2O 6.32 PiO2 10.76 MnO 9.67 

ZnO 2.23 ZnO --- ZnO 2.14 PbO 15.84     

CO2 4.23 CO2 21.46 TiO2 1.55 CuO 3.38     

 

2.4. Superplasticizer 

The superplasticizer used in the current study was polycarboxylate based, i.e. Auramix 400 which conforms to BIS 9103-

1999 [31]. Auramix 400 is a high-performance superplasticizer intended for applications where high water reduction and 

long workability retention are required. The properties of the superplasticizer used are presented in the table. 4. 

 

Table 4: Properties of Superplasticizer 

S. No. Characteristics Value 

1. Appearance Light yellow coloured liquid 

2. pH Minimum 6.0 

3. Volumetric mass@ 20 0C g/litre 

 

 

3. DATA COLLECTION 

The experimental methodology was designed as per Taguchi’s L9 orthogonal array. The cement was replaced with fly ash, 

ladle furnace slag and copper slag at 10%, 25% and 40% level. The sand was replaced with electric arc furnace slag, iron slag 

and glass powder at 20%, 30% and 40% level. The mix was designed for water to binder ratio of 0.40, 0.44 and 0.48 as per 
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BIS 10262-1982 [32]. Thus 27 concrete mixtures relating to each of the nine experiments listed in Table 2 were prepared. 

Additionally, three more mixes representing a control mix with no replacement were also made for comparison as given in 

Table 5 to Table 7. Potable water was used for making concrete. All the concrete mixtures were prepared with good 

supervision and were cured adequately for curing ages of 7, 28, and 90 days. The raw data for model generation includes (i) 

water/binder ratio (W/B), (ii) Curing period (CP) (iii) Cement content (C), (iv) type of binder as replacement of cement (RC), 

(v) Replaced binder % content (RCP), (vi) Sand content(S), (vii) type of fine aggregate as replacement of sand (RS), (viii) 

Replaced fine aggregate % content (RSP) and (ix) Dose of superplasticizer(SP). The coarse aggregate content (CA) and water 

content (W) were kept constant for all the concrete mixes. The response parameter is the experimental compressive strength 

(CST), whereas, the output obtained is designated as predicted compressive strength (PCS). 

 

Table 5: Concrete Mix Design Proportion Using specific gravity of by-products for Water /Binder Ratio = 0.40 

Exp. 

No 

Binder (Kg/m³) Fine Aggregate (kg/m³) 
Superplasticizer 

(l/m3) 

 

Compressive Strength 

(MPa) 

Cement 
Replacement 

Material 

Amount 

 
FA 

Replacement 

Material 

Amount 

 

 

7 

days 

 

28 

days 

 

90 

days 

1. 393.75 FA 32.95 522.67 EAFS 140.24 1.97 41.5 53.76 72.05 

2. 393.75 LFS 46.97 457.33 IS 240.51 2.95 39.82 50.32 64.35 

3. 393.75 CS 54.83 392 GP 249.85 3.93 30.8 46.2 51.18 

4. 328.12 LFS 117.44 522.67 GP 124.92 3.28 27.5 39.6 44.55 

5. 328.12 CS 137.07 457.33 EAF 210.36 3.28 29.81 40.92 46.2 

6. 328.12 FA 82.38 392 IS 320.68 3.28 31.24 49.94 66.33 

7. 262.5 CS 219.31 522.67 IS 160.33 1.31 21.12 31.21 36.22 

8. 262.5 FA 131.81 457.33 GP 187.39 2.62 29.77 49.14 64.9 

9. 262.5 LFS 187.9 392 EAF 280.47 5.24 25.85 30.88 39.38 

Control Mix    

 
437.5 - 0 653.34 - 0 0 39.8 51.05 55.64 

 

Table 6: Concrete Mix Design Proportion Using specific gravity of by-products for Water /Binder Ratio = 0.44 

Exp. 

No 

Binder (Kg/m³) Fine Aggregate (kg/m³) 

Superplasticizer 

(l/m3) 

Compressive Strength 

(MPa) 

Cement 
Replacement 

Material 

Amount 

 
FA 

Replacement 

Material 

Amount 

 

 

7 

days 

 

28 

days 

 

90 

days 

1. 360 FA 30.13 543.14 EAF 145.73 0.9 30.97 47.83 61.33 

2. 360 LFS 42.95 475.25 IS 249.93 2.16 31 45.68 56.21 

3. 360 CS 50.13 407.36 GP 259.63 2.7 29.83 40.79 48.11 

4. 300 LFS 107.37 543.14 GP 129.82 2.25 26.94 37.14 43.45 

5. 300 CS 125.32 475.25 EAF 218.6 2.25 28.82 37.62 45.34 

6. 300 FA 75.32 407.36 IS 333.24 1.5 30.42 46.6 60.35 

7. 240 CS 200.51 543.14 IS 166.62 0.72 19.58 27.03 33.81 

8. 240 FA 120.52 475.25 GP 194.73 1.2 25.74 37.95 51.62 

9. 240 LFS 171.8 407.36 EAF 291.47 4.8 23.96 28.08 36.74 

Control Mix    

 
400 - 0 678.93 - 0 0 30.5 45.13 47.2 

 

Table 7: Concrete Mix Design Proportion Using specific gravity of by-products for Water /Binder Ratio = 0.48 

Exp. 

No 

Binder (Kg/m³) Fine Aggregate (kg/m³) 
Superplasticizer 

(l/m3) 

 

Compressive Strength 

(MPa) 

Cement 
Replacement 

Material 

Amount 

 
FA 

Replacement 

Material 

Amount 

 

 

7 days 

 

28 

days 

 

90 

days 

1. 333.75 FA 27.93 560.98 EAF 150.52 0.33 28.6 46.05 57.09 

2. 333.75 LFS 39.82 490.86 IS 258.14 1.66 28.38 45.02 55.96 
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3. 333.75 CS 46.47 420.74 GP 267.13 1.66 26.48 39.82 45.98 

4. 278.12 LFS 99.54 560.98 GP 133.56 1.39 21.48 30.23 38.5 

5. 278.12 CS 116.18 490.86 EAF 225.78 1.39 22.3 33.96 41.09 

6. 278.12 FA 69.83 420.74 IS 344.19 0.69 22.73 39.08 56.77 

7. 222.5 CS 185.9 560.98 IS 172.1 0.44 16.06 23.76 31.1 

8. 222.5 FA 111.73 490.86 GP 200.35 1.1 21.78 31.82 44.73 

9. 222.5 LFS 159.27 420.74 EAF 301.04 4.44 17.16 24.11 32.45 

Control Mix    

 
370.83 - 0 701.23 - 0 0 27.00 42.06 46.2 

 

3.1. Testing method 

The compressive strength was tested on cubes of sides 150 mm in accordance with BIS 516-1959 [33]. The compressive 

strength was determined for curing ages of 7, 28, and 90 days. For each mixture, three specimens were tested. The testing 

was carried out on the specimen in wet condition using Compression Testing Machine of 5000 kN capacity. The cubes were 

placed on the machine such that the load was applied to the opposite sides of the cube as cast. The loading was increased 

continuously at a rate of 140 kg/cm2/min, and the maximum load that can be sustained by the specimen was noted. The 

maximum load divided by the cross-sectional area of the specimen gave the compressive strength. For each mixture, the 

average of the three samples was considered to be the compressive strength of the particular mix at a specified curing age. 

The variations between the three specimens did not exceed ±15 %. 

Compressive strength was measured at 7, 28 and 90 curing days and as shown in the last three columns of Tables 5 to 7 

above. 

 

4. MODELLING 

To obtain a generalized structure, the compressive strength results presented in Table 8 were modelled using ANN and 

ANFIS. For each model, the input and output parameters were varied. 

 

4.1. Artificial Neural Network (ANN) Model 

Neural networks are very sophisticated modelling techniques capable of modelling extremely complex functions. The true 

power and advantage of neural networks lie in their ability to represent both linear and nonlinear relationships and in their  

ability to learn these relationships directly from the data being modelled. These networks learn by example. The user of 

neural networks gathers representative data and then invokes training algorithms to learn the structure of the data 

automatically. Artificial Neural Network consists of many simple elements called neurons. The neurons interact with each 

other using weighted connection similar to biological neurons. Inputs to the artificial neural net are multiplied by 

corresponding weights. All the weighted inputs are then segregated and then subjected to nonlinear filtering to determine the 

state or active level of neurons. The ANN consists of three groups, or layers of units: a layer of "input" units also called input 

layer is connected to a layer of "hidden" units also called hidden layer, which is further connected to a layer of "output" units 

also called output layer, as represented in Fig. 1. 

 

 
Figure1: Artificial neural network 

 

4.1.1. Architecture of neural networks  

There are several algorithms which can be implemented in Artificial Neural Network Modelling. Among the various 

algorithms available, Levenberg–Marquardt backpropagation (LMBP) algorithm is the most commonly used training 

algorithm due to its speed and robustness Kermani et al. [34]. Hence, in this paper, Levenberg–Marquardt backpropagation 

(LMBP) algorithm has been adopted to synthesize Artificial Neural Network models. This algorithm uses the layered feed-

forward networks, in which, the neurons are arranged in layers, signals are sent forward, and errors are propagated backwards 

(Fig. 2.). The number of iterations required by the neural network model to converge is termed as the epoch. It is an 

indication of the number of times the weights were reinitialized until a satisfactory model with the highest possible 

correlation, was obtained with minimum error. 
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Figure2: Architecture of typical ANN. A typical ANN with input, sum function, log-sigmoid activation function, and output 

 

4.1.2. Neural network model structure and parameters 

The neural network model has been developed using Neural Network Toolbox in MATLAB software. The model is 

generated with nine neurons in the input layer and 20 neurons in the hidden layer and one neuron in the output layer as shown 

in Fig. 3.  

 

 
Figure3:  A multi-layer tansig-purelin network with nine input neurons, one output neuron, and one hidden layer of twenty 

neurons 

 
Figure4:  Configuration of the FFBP neural network for the concrete on the response compressive strength 

The neurons of adjacent layers are completely interconnected with each other by weights. The output layer neurons produce 

the network output as a prediction of compressive strength. The configuration of the Feed Forward Back Propagation (FFBP) 

neural network for the concrete on the response compressive strength has been shown in fig. 4. Among the total data, 

approximately 70% of the data has been considered for training. Out of the remaining 30% data, 15% each has been 

considered for testing and validation respectively. In training, adjustments of weights of each parameter take place, such that 

the variation between actual and predicted values is minimized. A non-linear sigmoidal function is used as the transfer 

function. The learning behaviour of the FFBP neural network model and performance results of the FFBP algorithm, 

developed for the model of compressive strength is shown in the fig. 7 and fig. 8. 

To minimize the mean squared error (MSE) of the training data, the values of various parameters selected in the neural 

network model are as under:- 

Number of input layer units=9 

Number of hidden layers=1 

Number of hidden layer units=20 

Number of output layer units=1 

Momentum rate =0.9 

Learning rate= 0.3 

Error after learning= 0.001 

The comparison of the Experimental/Target and predicted compressive strength versus all data samples and their correlation 

for training, validation, testing is shown in fig. 5 and fig. 6 respectively. 
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Figure5: The comparison of the Experimental/Target and predicted compressive strength versus all data samples for ANN 

modelling 

 

 
Figure6: The correlation between the experimental values and the FFBP-ANN predicted values of compressive strength for 

training, validation, testing and overall. 

 

 
 

Figure7: Learning behaviour of the FFBP neural network model 
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Figure8: The performance results of the FFBP algorithm developed for the model of compressive strength. 

 

4.2. Adaptive Neuro-Fuzzy Inferencing Systems (ANFIS) Model 

The adaptive neuro-fuzzy inference system was first introduced by Jang [35]. ANFIS incorporates the human-like reasoning 

style of fuzzy inference systems (FIS) by the use of input-output sets and a set of IF-THEN fuzzy rules. FIShas a structured 

knowledge where each fuzzy rule describes a local behaviour of the system. However, it lacks the adaptability to deal with a 

changing external environment. Therefore neural network learning concepts have been incorporated in FIS, resulting in 

ANFIS. In the network, the basic learning algorithm, the back propagation, aims to minimize the prediction error. For the 

reasons above, in ANFIS, both the learning capabilities of a neural network and reasoning capabilities of fuzzy logic are 

combined. Yuan et al. [36] 

The architecture of ANFIS with two input variables is shown in Fig. 9 and the fuzzy-reasoning mechanism illustrates as 

follows: 

 
Figure9: Architecture of ANFIS and Fuzzy-reasoning scheme of ANFIS. 

 

Rule 1: IF x is A1 and y is B1, THEN f1 = p1 + q1 + r1. 

Rule 2: IF x is A2 and y is B2, THEN f2 = p2 + q2 + r2. 

The function of each layer is described subsequently: 

Layer 1 

The first layer of this architecture is the fuzzy layer. Each node of this layer makes the membership grade of a fuzzy set. 

Every node in this layer is an adaptive node with a node function. 

Oi1 = µAi (x)  

The where x is the input to node i and Ai is the linguistic label associated with this node function. Premise parameters change 

the shape of the membership function. 

Layer 2 

Every node in this layer is a circle node labeled П, representing the firing strength of each rule, which multiplies the 

incoming signals and sends the products out, i.e. П-norm operation. 

Oi2 = µAi(x) x µBi(y),      i = 1, 2 

Layer 3 

Every node in this layer is a circle node labeled N, representing the normalized firing strength of each rule. The ith node 

calculated the ratio of the ith rule’s firing weight to the sum of all rule’s firing weights: 
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Oi3 = w i = 
  

     
  ,            i = 1, 2 

The outputs of this layer are called normalized firing strengths. 

Layer 4 

Every node in this layer is an adaptive node with a node function, indicating the contribution of the ith rule towards the 

overall output. 

Oi4 = w i   fi = w i (pix + qiy + ri ) ,    i = 1,2 

Where w i   is the output of layer 3, and (pix + qiy + ri) is the parameter set. 

Layer 5 

The signal node in this layer is a circle node labeled ∑, indicating the overall output as the summation of all incoming signals 

calculated, i.e. 

Oi5 = ∑ w i   fi =  
     

   
 

There were five layers in this model, including input, input membership function, rule, the output membership function and 

output. The data set used in the ANFIS model was the first sets of data. 

MATLAB R2005a with adaptive neural-fuzzy inference system toolbox was employed. Subtractive clustering method was 

used to build the model using the MATLAB ANFIS toolbox as it was easy to generate an input-output rule model and 

without an exponential explosion. The comparison of the Experimental and predicted compressive strength for all data, test 

data and training data samples for ANFIS modelling have been shown in fig. 10 to fig. 12 respectively. The correlation 

between the experimental values and the predicted values by ANFIS of compressive strength for training, testing and overall 

data is shown in fig. 13. 

 
Figure10: The comparison of the Experimental and predicted compressive strength for all data samples for ANFIS modelling. 

 
Figure11: The comparison of the Experimental and predicted compressive strength for test data samples for ANFIS 

modelling 
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Figure12: The comparison of the Experimental and predicted compressive strength for training data samples for ANFIS 

modelling. 

 

 

 
 

 
Figure13: The correlation between the experimental values and the ANFIS predicted values of compressive strength for 

training, testing and overall data. 

 

 

Table 8: Predicted compressive strength by ANN and ANFIS Models 

S. No. 

Concrete mix 

Design as 

depicted in Table 

5 to 7 

Curing 

Age 

(Days) 

W/B 

Ratio 

Compressive 

Strength 

Experimental 

Values (MPa) 

Predicted 

Compressive Strength  

by ANN Model 

(MPa) 

Predicted 

Compressive Strength 

by ANFIS Model 

(MPa) 

1. 1 7 0.40 41.5 39.98956648 41.49999613 

2. 2 7 0.40 39.82 39.81999951 39.82000425 

3. 3 7 0.40 30.8 30.8000026 30.79999696 

4. 4 7 0.40 27.5 27.50000225 27.12873173 

5. 5 7 0.40 29.81 29.8100016 29.80999746 

6. 6 7 0.40 31.24 31.23999867 31.24000215 

7. 7 7 0.40 21.12 19.75438658 29.16179349 

8. 8 7 0.40 29.77 32.69187834 29.77000004 
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9. 9 7 0.40 25.85 25.85000054 25.85000016 

10. Control 7 0.40 39.8 39.79999595 39.80000469 

11. 1 7 0.44 30.97 30.96999984 30.97000205 

12. 2 7 0.44 31 30.99999952 30.99998052 

13. 3 7 0.44 29.83 27.70792374 29.82999822 

14. 4 7 0.44 26.94 26.94000062 27.55248073 

15. 5 7 0.44 28.82 28.82000061 30.45885392 

16. 6 7 0.44 30.42 26.59476457 30.4200188 

17. 7 7 0.44 19.58 19.5799996 19.57999882 

18. 8 7 0.44 25.74 25.97503398 25.73997815 

19. 9 7 0.44 23.96 23.95999993 26.33263902 

20. Control 7 0.44 30.5 30.49999884 33.41261392 

21. 1 7 0.48 28.6 26.47999808 28.59999569 

22. 2 7 0.48 28.38 16.67181009 28.37998411 

23. 3 7 0.48 26.48 22.30000001 26.48001205 

24. 4 7 0.48 21.48 22.72999882 19.14868068 

25. 5 7 0.48 22.3 16.45369367 24.33765098 

26. 6 7 0.48 22.73 21.77999989 28.55074418 

27. 7 7 0.48 16.06 17.04653735 14.4415056 

28. 8 7 0.48 21.78 49.33806339 20.47791822 

29. 9 7 0.48 17.16 53.75999719 12.69583832 

30. Control 7 0.48 27 26.9999997 26.99998849 

31. 1 28 0.40 53.76 44.2793771 53.76000289 

32. 2 28 0.40 50.32 39.60000196 50.3200175 

33. 3 28 0.40 46.2 36.96174996 43.03396048 

34. 4 28 0.40 39.6 45.59084331 39.60000262 

35. 5 28 0.40 40.92 23.55458413 40.92000093 

36. 6 28 0.40 49.94 49.13999944 49.93999909 

37. 7 28 0.40 31.21 30.88000032 31.20999964 

38. 8 28 0.40 49.14 45.13000014 49.13999366 

39. 9 28 0.40 30.88 45.91569217 30.88000231 

40. Control 28 0.40 51.05 55.72857915 51.04997835 

41. 1 28 0.44 47.83 40.78999855 47.82999415 

42. 2 28 0.44 45.68 37.14000067 45.67999143 

43. 3 28 0.44 40.79 37.62000027 40.7900207 

44. 4 28 0.44 37.14 37.46512768 37.13999775 

45. 5 28 0.44 37.62 22.69438435 39.52500224 

46. 6 28 0.44 46.6 37.94999909 46.59998026 

47. 7 28 0.44 27.03 28.0799995 27.02999856 

48. 8 28 0.44 37.95 42.05999931 37.95003201 

49. 9 28 0.44 28.08 44.19696111 29.61307114 

50. Control 28 0.44 45.13 45.67999687 45.13000651 

51. 1 28 0.48 46.05 39.81999792 46.04999408 

52. 2 28 0.48 45.02 30.23000056 45.02002183 

53. 3 28 0.48 39.82 33.96000029 39.81998935 

54. 4 28 0.48 30.23 28.59999952 30.33379373 

55. 5 28 0.48 33.96 28.37999762 33.9600024 

56. 6 28 0.48 39.08 39.07999692 39.07998729 

57. 7 28 0.48 23.76 23.7599997 25.63011707 

58. 8 28 0.48 31.82 34.05520274 31.82000591 

59. 9 28 0.48 24.11 24.11000099 24.10999968 

60. Control 28 0.48 42.06 45.01999758 42.06000725 

61. 1 90 0.40 72.05 72.04999026 72.04999705 

62. 2 90 0.40 64.35 66.02375885 60.08588752 

63. 3 90 0.40 51.18 51.17999939 51.17999667 

64. 4 90 0.40 44.55 54.17909038 44.54998601 

65. 5 90 0.40 46.2 42.8833483 46.20000851 
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66. 6 90 0.40 66.33 66.32999296 68.01360399 

67. 7 90 0.40 36.22 36.21999815 36.2199927 

68. 8 90 0.40 64.9 64.89999546 64.90000517 

69. 9 90 0.40 39.38 41.57957803 39.38000457 

70. Control 90 0.40 55.64 55.63998864 47.62513745 

71. 1 90 0.44 61.33 61.32999251 64.60448713 

72. 2 90 0.44 56.21 56.20999608 56.20999636 

73. 3 90 0.44 48.11 48.11000041 48.11000698 

74. 4 90 0.44 43.45 43.44999889 43.45000999 

75. 5 90 0.44 45.34 45.33999886 48.8551834 

76. 6 90 0.44 60.35 60.34999224 60.3499932 

77. 7 90 0.44 33.81 26.9446058 33.80995568 

78. 8 90 0.44 51.62 51.61999539 51.61999544 

79. 9 90 0.44 36.74 36.7399989 36.28834618 

80. Control 90 0.44 47.2 47.199988 47.20000225 

81. 1 90 0.48 57.09 48.7066843 68.07460176 

82. 2 90 0.48 55.96 44.62857681 55.9600099 

83. 3 90 0.48 45.98 45.97999881 44.17953859 

84. 4 90 0.48 38.5 38.49999848 38.5000029 

85. 5 90 0.48 41.09 42.6567015 41.09000139 

86. 6 90 0.48 56.77 56.76999122 56.77000444 

87. 7 90 0.48 31.1 31.09999824 31.10000814 

88. 8 90 0.48 44.73 44.72999568 44.72999902 

89. 9 90 0.48 32.45 32.44999742 40.47576797 

90. Control 90 0.48 46.2 46.19999185 48.72752419 

 

5. RESULTS AND DISCUSSION 

Five indices were determined to evaluate the performance of the ANN and ANFIS models in predicting compressive 

strength. These indices are the root mean squared error (RMSE), determination coefficients (R
2
), Mean absolute percentage 

error (MAPE), Integral absolute error (IAE) and mean absolute error (MAE) between the predicted and experimental results 

which are computed using the equations given in the table. 9. 

Where t and o are the target and the predicted value of the network respectively, and n is the total number of patterns and  ̅ is 

the average of the target values.  

 

Table 9: Statistical values of proposed models 

S. No. 
Performance 

indices 
Formula ANN ANFIS 

1 RMSE RMSE = √
 

 
 (     )  
    7.17 2.2911 

2 R
2
 R

2
 =   

 (     )  
   

 (     ̅ )  
   

 0.659 0.9652 

3 MAPE MAPE = 
 

 
[
 |     | 
   

    
   

    ] 0.1047% 0.02755% 

4 IAE IAE = 
 [(     ) ]

    
   

    
   

     1.946% 0.6219% 

5 MAE MAE = 
 

 
[ |     | 

   ] 3.661 0.9627 

The correlation coefficient (R) obtained for training, testing, validation and overall data for the ANN and ANFIS models is 

presented in Table.10. 

 

Table 10: The values of the correlation coefficient (R) 

Model Training Testing Validation Overall 

ANN 1 0.94141 0.93129 0.97729 

ANFIS 1 0.96469 - 0.98308 

 

The ANN and ANFIS models developed in the present study were used to predict the compressive strength of concrete 

containing industrial by-products. The comparisons between the predicted values and actual results for the training, testing 

and all datasets of each model are shown in fig. 4 and fig. 9 to fig. 11. It can be seen that the predicted values of the training 
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and testing sets in the constructed ANN and ANFIS models are very close to the target values, demonstrating that these 

models could successfully learn the nonlinear relationship between the input and output variables. Therefore, both models 

show good potential for predicting the compressive strength of concrete containing industrial by-products. 

The correlation coefficient (R) obtained for training, testing, validation and overall data for the ANN and ANFIS models is 

presented in Table. 10. From this table, we see that the overall value of the correlation factor (R) for the ANN model is 

0.97729 and for the ANFIS model is  0.98308, which is better and closer to one. It shows that the prediction of the 

compressive strength is better by the ANFIS model than the ANN model. 

The performance indices of the ANN and ANFIS models for both the training and testing sets, including RMSE, MAPE, R2, 

IAE and MAE are given in Table. 9. Therefore a prediction is considered better when RMSE, MAPE, and IAE is closer to 

zero and R
2 

is closer to one. From the performance indices shown in Table 9, it is seen that the ANFIS model showed better 

results than the ANN model.  

 

6. CONCLUSIONS 

The main goal of the present study is to design and develop ANN and ANFIS models for predicting the compressive strength 

of concrete containing ternary combinations of industrial by-products as partial replacement of cement and fine aggregates.  

The following conclusions were drawn from this study: 

The neural network and ANFIS models could predict the compressive strength of concrete containing industrial by-products 

with satisfactory performance owing to their distributed and parallel computing nature. 

The predicted values from the ANFIS model proved highly accurate. Moreover, the comparison of the performance indices 

showed that the ANFIS model provided better results than the ANN model. 

In general, the proposed ANN and ANFIS models have high applicability and reliability with respect to predicting the 

compressive strength of concrete containing industrial by-products as partial replacement of cement and sand. 

7. NOTATIONS 

The following notations are used in the present paper. 

ANFIS: Adaptive neuro-fuzzy inferencing systems 

ANN: Artificial neural network 

ASR: Alkali-silica reaction 

BIS: Bureau of Indian standards 

CA: Coarse aggregate 

CC: Cement content 

CO2: Carbon dioxide 

CP: Curing period 

CS: Copper Slag 

EAF: Electric arc furnace slag 

EDS: Energy dispersive spectroscopy 

FA: Fly ash 

FFBP: Feed forward back propagation 

FIS: Fuzzy inference systems 

GGBFS: Granulated blast-furnace slag 

GP: Glass powder 

IS: Iron Slag 

IAE: Integral absolute error 

LFS: ladle furnace slag 

LM: Levenberg- marquardt 

LMBP: Levenberg–marquardt backpropagation 

LS: Limestone 

MAE: Mean absolute error 

MAPE: Mean absolute percentage error 

MK: Metakaolin 

MSE: Mean squared error 

OA: Orthogonal array 

PCS: Predicted compressive strength 

PG: Phosphogypsum 

RC: Replacement of cement 

RMSE: Root means squared error 

RS: Replacement of sand 

SCM: Supplementary cementitious materials 

SEM: Scanning electron microscopy 

SF: Silica Fume 
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SS: Steel Slag 
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