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1. INTRODUCTION 

Regular Expressions is nothing but a sequence of characters. These expressions say for example [0-9] means that the 

expression should contain numbers. Regular expressions are used in many situation in computer programming. Majorly in 

search pattern matching, parsing, filtering of results and so on. You may see this websites where you are only forced to enter 

only numbers or only characters or minimum 8 characters and so on. These are controlled by regular expression behind the 

screens. The DFA or Deterministic Finite Automata is a finite state machine that rejects or accepts strings of symbols and only 

produces computation which is unique for each input string of the automaton. NFA (Nondeterministic Finite Automata) does 
not obey the restrictions of the DFA.  NFA takes in a string of input symbols. Until all input symbols have been consumed, 

each input symbol transitions to a new state. Thompsons Construction transforms regular expression to NFA to match strings 

against regular expressions. Kleene's Algorithm transforms a DFA into a regular expression. 
The rest of the paper is organized as follows. Thompsons Construction algorithm and Kleene’s Algorithm are explained in 
section II. Experimental results are presented in section III. Concluding remarks are given in section IV. 
 

2. PROPOSED ALGORITHM 

2.1 Thompson’s Construction algorithm – 

Thompson’s Construction algorithm works by recursive splitting of an expression into subexpression, from which the NFA 

will be constructed using a set of rules.[1] More precisely, from a regular expression E, the obtained automaton A with the 

transition function δ respects the following properties: 

 A has exactly one initial state q0, which is not accessible from any other state. That is, for any state q and any letter a, does 

not contain q0. 

 A has exactly one final state qf, which is not co-accessible from any other state. That is, for any letter a, . 

 Let c be the number of concatenation of the regular expression E and let s be the number of symbols apart from 
parentheses — that is, |, *, a and ε. Then, the number of states of A is 2s − c (linear in the size of E). 

 The number of transitions leaving any states is at the most two. 

 Since NFA of m states and e transitions from every state can match a string of length n in time O(emn), a Thompson NFA 

can match pattern in linear time, assuming a fixed-size alphabet. 

Rules 

The following rules are depicted according to Aho et al. (1986),[3] p. 122. N(s) and N(t) is the NFA of the 

subexpression s and t, respectively. 

The empty-expression ε is converted to 
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A symbol a of the input alphabet is converted to 

 
The union expression s|t is converted to 

 
State q goes via ε to the initial state of N(s) or N(t). The final states become intermediate states of the whole NFA and merge 

via two ε-transitions into the final state of the NFA. 

The concatenation expression st is converted to 

 
The initial state of N(s) is the initial state of the whole NFA. The final state of N(s) becomes the initial state of N(t). The final 

state of N(t) is the final state of the whole NFA. 

The Kleene star expression s* is converted to 

 
An ε-transition connects final and initial state of the NFA with the sub-NFA N(s) in between. Another ε-transition from the 

inner final to the inner initial state of N(s) allows for repetition of expression s according to the star operator. 

 

2.2 Kleene’s algorithm – 
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In computer science, Kleene's algorithm transforms a given  (DFA) deterministic finite automaton into a regular expression. 

Together with other conversion algorithms, it establishes the equivalence of several description formats for regular languages. 

Algorithm description 

The algorithm can be traced back to Kleene (1956). According to Gross and Yellen (2004), 

This description follows Hopcroft and Ullman (1979). Given a deterministic finite automaton M = (Q, Σ, δ, q, F), with Q = { 

q,...,q } its set of states, the algorithm computes 
Here, "going through a state" means entering and leaving it, so both i and j may be higher than k, but no intermediate state 

may. Each set Rkij is represented by regular expressions. The algorithm computes step by step for k = -1, 0, ..., n. Since there 

is no state numbered higher than n, the regular expression Rn0jrepresents the set of all strings that take M from its start state q 

to q. If F = { q,...,q } is the set of accept states, the regular expression Rn01 | ... | Rn0f represents the language accepted by M. 

The initial regular expressions, for k = -1, are computed as 

R−1ij = a | ... | a | ε, if i=j, where δ(q,a) = ... = δ(q,a) = q 

In each step the expressions Rkij are computed from the previous ones by 
 

 

3. EXPERIMENT AND RESULT 

3.1 Thompsons Construction 

Construction of an NFA from a Regular Expression 

INPUT: A regular expression r over alphabet C. OUTPUT: An NFA N accepting L(r) 

Begin by parsing r into its subexpressions. The rules for constructing an NFA contains of basis rules for handling 

subexpressions with no operators, and inductive rules for constructing larger NFA's from the NFA's for the immediate 

subexpressions of a given expression. 

BASIS: For expression e construct the NFA 

 
i is a new state, the start state of this NFA, and f is other new state, the accepting state for the NFA. 

For any subexpression a in C, construct the NFA 
 
 

 

INDUCTION: Suppose N(s) and N (t) are NFA's for regular expressions s and t, respectively. 

 
a) For the regular expression s|t, 

 

b) For the regular expression st, 
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c) For the regular expression S*, 
 

 
 

d) Finally, suppose r = (s). Then L(r) = L(s), and we can use the NFA, N(s) as N(r). 

a. N(r) has at most twice as many states as there are operators and operands in r. This bound follows from the fact that 

each step of the algorithm creates at most two new states. 

b. N(r) has one start state and one accepting state. The accepted state has no outgoing transitions, and the state which starts 

has no incoming transitions. 

c. Each state of N (r) other than the accepting state has either one outgoing transition on a symbol in C or two outgoing 

transitions, both on E. 

construct an NFA for r  

= (a|b)*a For r1  = a, 

For r1  = b, 
 
 

For r3  = a | b 
 

The NFA for r5  = (r3) is the same as r3. The NFA for r6  = (r3)* 



 

 

Finally NFA for r = (a|b)*a 
 

 
3.2 Kleene’s Algorithm 

The automaton shown in the picture can be described as M = (Q, Σ, δ, q0, F) with 

 the set of states Q = { q0, q1, q2 }, 

 the input alphabet Σ = { a, b }, 

 the transition function δ with δ(q0,a)=q0,   δ(q0,b)=q1,   δ(q1,a)=q2,   δ(q1,b)=q1,   δ(q2,a)=q1, and δ(q2,b)=q1, 

 the start state q0, and 

 set of states accepted F = { q1 }. 

Kleene's algorithm computes the regular expressions as 

R−1 

00     
= a | ε 

R−1 

01 
= b 

R−1 

02 
= ∅ 

R−1 

10 
= ∅ 

R−1 

11 
= b | ε 

R−1 

12 
= a 

R−1 

20 
= ∅ 

R−1 

21 
= a | b 

R−1 

22 
= ε 
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After that, the Rk 

ij are computed from the Rk-1 

ij step by step for k = 0, 1, 2. Kleene algebra equalities are used to simplify the regular expressions as much as possible. 

Step 0: 

R0 

00     

= R−1 

00 (R−1 

00)* R−1 

00 | R−1 

00     

= (a | ε) (a | ε)* (a | ε) | a | ε     = a* 

R0 

01 

= R−1 

00 (R−1 

00)* R−1 

01 | R−1 

01 

= (a | ε) (a | ε)* b | b = a* b 

R0 

02 

= R−1 

00 (R−1 

00)* R−1 

02 | R−1 

02 

= (a | ε) (a | ε)* ∅ | ∅ = ∅ 

R0 

10 

= R−1 

10 (R−1 

00)* R−1 

00 | R−1 

10 

= ∅ (a | ε)* (a | ε) | ∅ = ∅ 

R0 

11 

= R−1 

10 (R−1 

00)* R−1 

01 | R−1 

11 

= ∅ (a | ε)* b | b | ε = b | ε 

R0 

12 

= R−1 

10 (R−1 

00)* R−1 

02 | R−1 

12 

= ∅ (a | ε)* ∅ | a = a 

R0 

20 

= R−1 

20 (R−1 

00)* R−1 

00 | R−1 

20 

= ∅ (a | ε)* (a | ε) | ∅ = ∅ 

R0 

21 

= R−1 

20 (R−1 

00)* R−1 

01 | R−1 

21 

= ∅ (a | ε)* b | a | b = a | b 

R0 

22 

= R−1 

20 (R−1 

00)* R−1 

02 | R−1 

22 

= ∅ (a | ε)* ∅ | ε = ε 

Step 1: 

R1 

00     

= R0 
01 (R0 

11)* R0 

10 | R0 

00     

= a*b (b | ε)* ∅ | a*         = a* 

https://en.wikipedia.org/wiki/Kleene_algebra


 

R1 

01 

= R0 

01 (R0 

11)* R0 

11 | R0 

01 

= a*b (b | ε)* (b | ε) | a* b = a* b* b 

R1 

02 

= R0 

01 (R0 

11)* R0 

12 | R0 

02 

= a*b (b | ε)* a | ∅ = a* b* ba 

R1 

10 

= R0 

11 (R0 

11)* R0 

10 | R0 

10 

= (b | ε) (b | ε)* ∅ | ∅ = ∅ 

R1 

11 

= R0 

11 (R0 

11)* R0 

11 | R0 

11 

= (b | ε) (b | ε)* (b | ε) | b | ε = b* 

R1 

12 

= R0 
11 (R0 

11)* R0 

12 | R0 

12 

= (b | ε) (b | ε)* a | a = b* a 

R1 

20 

= R0 
21 (R0 

11)* R0 

10 | R0 

20 

= (a | b) (b | ε)* ∅ | ∅ = ∅ 

R1 

21 

= R0 

21 (R0 
11)* R0 

11 | R0 

21 

= (a | b) (b | ε)* (b | ε) | a | b = (a | b) b* 

R1 
22 

= R0 

21 (R0 

11)* R0 
12 | R0 

22 

= (a | b) (b | ε)* a | ε = (a | b) b* a | ε 

Step 2: 

R2 

00     

= R1 

02 (R1 

22)* R1 

20 | R1 

00     

= a*b*ba ((a|b)b*a | ε)* ∅ | a* = a* 

R2 

01 

= R1 

02 (R1 

22)* R1 

21 | R1 

01 

= a*b*ba ((a|b)b*a | ε)* (a|b)b* | a* b* b = 

R2 

02 

= R1 

02 (R1 

22)* R1 

22 | R1 

02 

= a*b*ba ((a|b)b*a | ε)* ((a|b)b*a | ε) | a* b* ba = 
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R2 

10 

= R1 

12 (R1 

22)* R1 

20 | R1 

10 

= b* a ((a|b)b*a | ε)* ∅ | ∅ = ∅ 

R2 

11 

= R1 

12 (R1 

22)* R1 

21 | R1 

11 

= b* a ((a|b)b*a | ε)* (a|b)b* | b* = 

R2 

12 

= R1 

12 (R1 

22)* R1 

22 | R1 

12 

= b* a ((a|b)b*a | ε)* ((a|b)b*a | ε) | b* a = 

R2 

20 

= R1 

22 (R1 

22)
*
 R1 

20 | R1 

20 

= ((a|b)b
*
a | ε) ((a|b)b

*
a | ε)

*
 ∅ | ∅ = ∅ 

R2 

21 

= R1 

22 (R1 

22)* R1 

21 | R1 

21 

= ((a|b)b*a | ε) ((a|b)b*a | ε)* (a|b)b* | (a | b) b* = 

R2 

22 

= R1 

22 (R1 

22)* R1 

22 | R1 

22 

= ((a|b)b*a | ε) ((a|b)b*a | ε)* ((a|b)b*a | ε) | (a | b) b* a | ε     = 

((step 2 simplification to be completed)) 

Since q0 is the start state and q1 is the only accept state, the regular expression R2 

01 denotes the set of all strings accepted by the automaton. 

 

4. CONCLUSION 

The proof of Kleene’s theorem implicitly defines a algorithm that can be used to construct the regular expression. It also 

suggests a recursive function that can be used to construct the expression. The most efficient solution, however, would be a 

dynamic programming solution, combining the simple and inefficient table-driven approach with the recursive solution. 
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