
A SURVEY OF PATTERN MATCHING ALGORITHMS IN

REGULAR EXPRESSIONS

Jesslee Velmon Crasto1 & Soujanya2

1. INTRODUCTION

Regular Expressions is nothing but a sequence of characters. These expressions say for example [0-9] means that the

expression should contain numbers. Regular expressions are used in many situation in computer programming. Majorly in

search pattern matching, parsing, filtering of results and so on. You may see this websites where you are only forced to enter

only numbers or only characters or minimum 8 characters and so on. These are controlled by regular expression behind the

screens. The DFA or Deterministic Finite Automata is a finite state machine that rejects or accepts strings of symbols and only

produces computation which is unique for each input string of the automaton. NFA (Nondeterministic Finite Automata) does
not obey the restrictions of the DFA. NFA takes in a string of input symbols. Until all input symbols have been consumed,

each input symbol transitions to a new state. Thompsons Construction transforms regular expression to NFA to match strings

against regular expressions. Kleene's Algorithm transforms a DFA into a regular expression.
The rest of the paper is organized as follows. Thompsons Construction algorithm and Kleene’s Algorithm are explained in
section II. Experimental results are presented in section III. Concluding remarks are given in section IV.

2. PROPOSED ALGORITHM

2.1 Thompson’s Construction algorithm –

Thompson’s Construction algorithm works by recursive splitting of an expression into subexpression, from which the NFA

will be constructed using a set of rules.[1] More precisely, from a regular expression E, the obtained automaton A with the

transition function δ respects the following properties:

 A has exactly one initial state q0, which is not accessible from any other state. That is, for any state q and any letter a, does

not contain q0.

 A has exactly one final state qf, which is not co-accessible from any other state. That is, for any letter a, .

 Let c be the number of concatenation of the regular expression E and let s be the number of symbols apart from
parentheses — that is, |, *, a and ε. Then, the number of states of A is 2s − c (linear in the size of E).

 The number of transitions leaving any states is at the most two.

 Since NFA of m states and e transitions from every state can match a string of length n in time O(emn), a Thompson NFA

can match pattern in linear time, assuming a fixed-size alphabet.

Rules

The following rules are depicted according to Aho et al. (1986),[3] p. 122. N(s) and N(t) is the NFA of the

subexpression s and t, respectively.

The empty-expression ε is converted to

1 Department of Master of Computer Applications, St. Aloysius Institute of Management and Information Technology

(AIMIT), Mangalore, Karnataka, India
2 Department of Master of Computer Applications, St. Aloysius Institute of Management and Information Technology

(AIMIT), Mangalore, Karnataka, India

Abstract- A regular expression or regex is a sequence of characters that define a search pattern. This pattern is then used by

string searching algorithms for performing finding and replacing operations on strings. This concept was invented by

American mathematician Stephen Cole Kleene in 1950’s when he formalized the description of a regular language. A regex

processor translates a regular expression into an internal representation which can be executed and matched against a string

representing the text being searched in. One possible approach is the Thompson's construction algorithm to construct a

nondeterministic finite automaton (NFA), which is then made deterministic and the resulting deterministic finite automaton

(DFA) is run on the target text string to recognize substrings that match the regular expression. This paper shows the

conversion of Regular expression into NFA to match strings using Thompsons Construction and DFA to Regular Expression

using Kleene’s algorithm.

Keywords – DFA, NFA, Regular Expression, Thompsons Construction, Kleene’s Algorithm

International Journal of Latest Trends in Engineering and Technology

Special Issue SACAIM 2017, pp. 354-361

e-ISSN:2278-621X

https://en.wikipedia.org/wiki/Recursively
https://en.wikipedia.org/wiki/Thompson%27s_construction#cite_note-1
https://en.wikipedia.org/wiki/Thompson%27s_construction#cite_note-3

 A Survey Of Pattern Matching Algorithms In Regular Expressions 355

A symbol a of the input alphabet is converted to

The union expression s|t is converted to

State q goes via ε to the initial state of N(s) or N(t). The final states become intermediate states of the whole NFA and merge

via two ε-transitions into the final state of the NFA.

The concatenation expression st is converted to

The initial state of N(s) is the initial state of the whole NFA. The final state of N(s) becomes the initial state of N(t). The final

state of N(t) is the final state of the whole NFA.

The Kleene star expression s* is converted to

An ε-transition connects final and initial state of the NFA with the sub-NFA N(s) in between. Another ε-transition from the

inner final to the inner initial state of N(s) allows for repetition of expression s according to the star operator.

2.2 Kleene’s algorithm –

https://en.wikipedia.org/wiki/Kleene_star

 Jesslee Velmon Crasto & Soujanya 356

In computer science, Kleene's algorithm transforms a given (DFA) deterministic finite automaton into a regular expression.

Together with other conversion algorithms, it establishes the equivalence of several description formats for regular languages.

Algorithm description

The algorithm can be traced back to Kleene (1956). According to Gross and Yellen (2004),

This description follows Hopcroft and Ullman (1979). Given a deterministic finite automaton M = (Q, Σ, δ, q, F), with Q = {

q,...,q } its set of states, the algorithm computes
Here, "going through a state" means entering and leaving it, so both i and j may be higher than k, but no intermediate state

may. Each set Rkij is represented by regular expressions. The algorithm computes step by step for k = -1, 0, ..., n. Since there

is no state numbered higher than n, the regular expression Rn0jrepresents the set of all strings that take M from its start state q

to q. If F = { q,...,q } is the set of accept states, the regular expression Rn01 | ... | Rn0f represents the language accepted by M.

The initial regular expressions, for k = -1, are computed as

R−1ij = a | ... | a | ε, if i=j, where δ(q,a) = ... = δ(q,a) = q

In each step the expressions Rkij are computed from the previous ones by

3. EXPERIMENT AND RESULT

3.1 Thompsons Construction

Construction of an NFA from a Regular Expression

INPUT: A regular expression r over alphabet C. OUTPUT: An NFA N accepting L(r)

Begin by parsing r into its subexpressions. The rules for constructing an NFA contains of basis rules for handling

subexpressions with no operators, and inductive rules for constructing larger NFA's from the NFA's for the immediate

subexpressions of a given expression.

BASIS: For expression e construct the NFA

i is a new state, the start state of this NFA, and f is other new state, the accepting state for the NFA.

For any subexpression a in C, construct the NFA

INDUCTION: Suppose N(s) and N (t) are NFA's for regular expressions s and t, respectively.

a) For the regular expression s|t,

b) For the regular expression st,

https://www.revolvy.com/main/index.php?s=Theoretical%20computer%20science&item_type=topic
https://www.revolvy.com/main/index.php?s=Deterministic%20finite%20automaton&item_type=topic
https://www.revolvy.com/main/index.php?s=Regular%20expression&item_type=topic
https://www.revolvy.com/main/index.php?s=Regular%20language&item_type=topic
https://www.revolvy.com/main/index.php?s=Kleene&item_type=topic
https://www.revolvy.com/main/index.php?s=Deterministic%20finite%20automaton&item_type=topic
https://www.revolvy.com/main/index.php?s=Deterministic%20finite%20automaton&item_type=topic
https://www.revolvy.com/main/index.php?s=Deterministic%20finite%20automaton&item_type=topic
https://www.revolvy.com/main/index.php?s=Deterministic%20finite%20automaton&item_type=topic
https://www.revolvy.com/main/index.php?s=Regular%20expression&item_type=topic
https://www.revolvy.com/main/index.php?s=Deterministic%20finite%20automaton&item_type=topic

 A Survey Of Pattern Matching Algorithms In Regular Expressions 357

c) For the regular expression S*,

d) Finally, suppose r = (s). Then L(r) = L(s), and we can use the NFA, N(s) as N(r).

a. N(r) has at most twice as many states as there are operators and operands in r. This bound follows from the fact that

each step of the algorithm creates at most two new states.

b. N(r) has one start state and one accepting state. The accepted state has no outgoing transitions, and the state which starts

has no incoming transitions.

c. Each state of N (r) other than the accepting state has either one outgoing transition on a symbol in C or two outgoing

transitions, both on E.

construct an NFA for r

= (a|b)*a For r1 = a,

For r1 = b,

For r3 = a | b

The NFA for r5 = (r3) is the same as r3. The NFA for r6 = (r3)*

Finally NFA for r = (a|b)*a

3.2 Kleene’s Algorithm

The automaton shown in the picture can be described as M = (Q, Σ, δ, q0, F) with

 the set of states Q = { q0, q1, q2 },

 the input alphabet Σ = { a, b },

 the transition function δ with δ(q0,a)=q0, δ(q0,b)=q1, δ(q1,a)=q2, δ(q1,b)=q1, δ(q2,a)=q1, and δ(q2,b)=q1,

 the start state q0, and

 set of states accepted F = { q1 }.

Kleene's algorithm computes the regular expressions as

R−1

00
= a | ε

R−1

01
= b

R−1

02
= ∅

R−1

10
= ∅

R−1

11
= b | ε

R−1

12
= a

R−1

20
= ∅

R−1

21
= a | b

R−1

22
= ε

 A Survey Of Pattern Matching Algorithms In Regular Expressions 359

After that, the Rk

ij are computed from the Rk-1

ij step by step for k = 0, 1, 2. Kleene algebra equalities are used to simplify the regular expressions as much as possible.

Step 0:

R0

00

= R−1

00 (R−1

00)* R−1

00 | R−1

00

= (a | ε) (a | ε)* (a | ε) | a | ε = a*

R0

01

= R−1

00 (R−1

00)* R−1

01 | R−1

01

= (a | ε) (a | ε)* b | b = a* b

R0

02

= R−1

00 (R−1

00)* R−1

02 | R−1

02

= (a | ε) (a | ε)* ∅ | ∅ = ∅

R0

10

= R−1

10 (R−1

00)* R−1

00 | R−1

10

= ∅ (a | ε)* (a | ε) | ∅ = ∅

R0

11

= R−1

10 (R−1

00)* R−1

01 | R−1

11

= ∅ (a | ε)* b | b | ε = b | ε

R0

12

= R−1

10 (R−1

00)* R−1

02 | R−1

12

= ∅ (a | ε)* ∅ | a = a

R0

20

= R−1

20 (R−1

00)* R−1

00 | R−1

20

= ∅ (a | ε)* (a | ε) | ∅ = ∅

R0

21

= R−1

20 (R−1

00)* R−1

01 | R−1

21

= ∅ (a | ε)* b | a | b = a | b

R0

22

= R−1

20 (R−1

00)* R−1

02 | R−1

22

= ∅ (a | ε)* ∅ | ε = ε

Step 1:

R1

00

= R0
01 (R0

11)* R0

10 | R0

00

= a*b (b | ε)* ∅ | a* = a*

https://en.wikipedia.org/wiki/Kleene_algebra

R1

01

= R0

01 (R0

11)* R0

11 | R0

01

= a*b (b | ε)* (b | ε) | a* b = a* b* b

R1

02

= R0

01 (R0

11)* R0

12 | R0

02

= a*b (b | ε)* a | ∅ = a* b* ba

R1

10

= R0

11 (R0

11)* R0

10 | R0

10

= (b | ε) (b | ε)* ∅ | ∅ = ∅

R1

11

= R0

11 (R0

11)* R0

11 | R0

11

= (b | ε) (b | ε)* (b | ε) | b | ε = b*

R1

12

= R0
11 (R0

11)* R0

12 | R0

12

= (b | ε) (b | ε)* a | a = b* a

R1

20

= R0
21 (R0

11)* R0

10 | R0

20

= (a | b) (b | ε)* ∅ | ∅ = ∅

R1

21

= R0

21 (R0
11)* R0

11 | R0

21

= (a | b) (b | ε)* (b | ε) | a | b = (a | b) b*

R1
22

= R0

21 (R0

11)* R0
12 | R0

22

= (a | b) (b | ε)* a | ε = (a | b) b* a | ε

Step 2:

R2

00

= R1

02 (R1

22)* R1

20 | R1

00

= a*b*ba ((a|b)b*a | ε)* ∅ | a* = a*

R2

01

= R1

02 (R1

22)* R1

21 | R1

01

= a*b*ba ((a|b)b*a | ε)* (a|b)b* | a* b* b =

R2

02

= R1

02 (R1

22)* R1

22 | R1

02

= a*b*ba ((a|b)b*a | ε)* ((a|b)b*a | ε) | a* b* ba =

 A Survey Of Pattern Matching Algorithms In Regular Expressions 361

R2

10

= R1

12 (R1

22)* R1

20 | R1

10

= b* a ((a|b)b*a | ε)* ∅ | ∅ = ∅

R2

11

= R1

12 (R1

22)* R1

21 | R1

11

= b* a ((a|b)b*a | ε)* (a|b)b* | b* =

R2

12

= R1

12 (R1

22)* R1

22 | R1

12

= b* a ((a|b)b*a | ε)* ((a|b)b*a | ε) | b* a =

R2

20

= R1

22 (R1

22)
*
 R1

20 | R1

20

= ((a|b)b
*
a | ε) ((a|b)b

*
a | ε)

*
 ∅ | ∅ = ∅

R2

21

= R1

22 (R1

22)* R1

21 | R1

21

= ((a|b)b*a | ε) ((a|b)b*a | ε)* (a|b)b* | (a | b) b* =

R2

22

= R1

22 (R1

22)* R1

22 | R1

22

= ((a|b)b*a | ε) ((a|b)b*a | ε)* ((a|b)b*a | ε) | (a | b) b* a | ε =

((step 2 simplification to be completed))

Since q0 is the start state and q1 is the only accept state, the regular expression R2

01 denotes the set of all strings accepted by the automaton.

4. CONCLUSION

The proof of Kleene’s theorem implicitly defines a algorithm that can be used to construct the regular expression. It also

suggests a recursive function that can be used to construct the expression. The most efficient solution, however, would be a

dynamic programming solution, combining the simple and inefficient table-driven approach with the recursive solution.

5. REFERENCES
[1] Ken Thompson (Jun 1968). "Programming Techniques: Regular expression search algorithm". Communications of the ACM. 11 (6): 419–

422. doi:10.1145/363347.363387.

[2] ^ Xing, Guangming. "Minimized Thompson NFA" (PDF).

[3] ^ Alfred V. Aho, Ravi Sethi, Jeffrey Ullman: Compilers: Principles, Techniques and Tools. Addison Wesley, 1986

[4] ^ Watson, Bruce W. (1995). A taxonomy of finite automata construction algorithms (PDF) (Technical report). Eindhoven University of Technology.

Computing Science Report 93/43.

[5] ^ R. McNaughton, H. Yamada (Mar 1960). "Regular Expressions and State Graphs for Automata". IEEE Transactions on Electronic Computers. 9 (1):

39–47. doi:10.1109/TEC.1960.5221603.

[6] Jonathan L. Gross and Jay Yellen, ed. (2004). Handbook of Graph Theory. Discrete Mathematics and it Applications. CRC Press. ISBN 1-58488-090-

2. Here: sect.2.1, remark R13 on p.65

[7] ^ Kleene, Stephen C. (1956). "Representation of Events in Nerve Nets and Finite Automate" (PDF). Automata Studies, Annals of Math. Studies.

Princeton Univ. Press. 34.

[8] ^ John E. Hopcroft, Jeffrey D. Ullman (1979). Introduction to Automata Theory, Languages, and Computation. Addison-Wesley. ISBN 0-201-02988-

X. Here: Theorem 2.4, p.33-34

https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1145%2F363347.363387
https://en.wikipedia.org/wiki/Thompson%27s_construction#cite_ref-2
http://people.wku.edu/guangming.xing/thompsonnfa.pdf
https://en.wikipedia.org/wiki/Thompson%27s_construction#cite_ref-3
https://en.wikipedia.org/wiki/Alfred_V._Aho
https://en.wikipedia.org/wiki/Jeffrey_Ullman
https://en.wikipedia.org/wiki/Thompson%27s_construction#cite_ref-4
http://alexandria.tue.nl/extra1/wskrap/publichtml/9313452.pdf
https://en.wikipedia.org/wiki/Eindhoven_University_of_Technology
https://en.wikipedia.org/wiki/Thompson%27s_construction#cite_ref-5
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1109%2FTEC.1960.5221603
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/1-58488-090-2
https://en.wikipedia.org/wiki/Special:BookSources/1-58488-090-2
https://en.wikipedia.org/wiki/Kleene%27s_algorithm#cite_ref-2
http://www.dlsi.ua.es/~mlf/nnafmc/papers/kleene56representation.pdf
https://en.wikipedia.org/wiki/Kleene%27s_algorithm#cite_ref-3
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-201-02988-X
https://en.wikipedia.org/wiki/Special:BookSources/0-201-02988-X

