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1. SHOCK STRUCTURE MODEL 

During numerical flow simulation, diffusion can be induced through artificial viscosity term to control development of flow. 

Early researchers included the dissipation term in the formulation of finite volume Euler equations to suppress odd-even point 

oscillations arising from pressure-velocity coupling. It was found that second difference diffusion terms with second and 

fourth difference pressure coefficients rendered wiggle-free computation. The highorder central differencing schemes produce 

accurate results in smooth flow regions but give rise to oscillations at shocks or discontinuities. This problem has been 

resolved through special upwinding methods and by Roe linearization technique [1], with or without characteristic 

decomposition. The development of Euler codes has paralleled the development of positivity or monotonicity preserving 

schemes that satisfy Jameson’s local extremum diminishing principle (LED criterion) [2] in order that physically meaningful 

values of pressure and density could be computed. Customarily, the residual is evaluated as convective and diffusive fluxes 

separately in order to improve the accuracy of computation of flow properties. If meshless technique is employed then the 

diffusive flux can be obtained as the product of point fluxes and least square (LSQ) coefficients along coordinate directions 

prior to time integration to steady state solution. Irregular boundaries and fine broken cells at the wall, which were constraints 

to computational accuracy of Cartesian mesh solvers, are now implemented efficiently by meshless wall boundary techniques 

[3]. The accuracy with which shock waves reflecting at the wall boundaries can be captured depends both on the 

computational schemes used and the shock structure model adopted. Even after a century old research, a concrete shock wave 

development model does not exist. Among various models suggested by researchers, the three-shock theory [4, 5] (3ST) 

putforth by von Neumann stands out as the most realistic one to describe the commonly encountered shock wave phenomena. 

In situations where only a regular shock reflection is expected as in ducted flows, a Mach wave reflection too may occur. A 

consequence of this effect is the appearance of Mach stem at the wall accompanied by a regular shock wave. Now, according 

to 3ST, non-regular shock reflection called Mach reflection (MR) is produced by three intersecting shock waves: incident 

wave, reflected wave and Mach stem. Their point of intersection called triple point (T) may move toward, away or parallel to 

the reflecting surface, giving rise to direct, inverse or stationary MR as shown in the Figures 1. These occurrences are termed 

as Mach stem and it forms the subject matter of this paper. 

  
Figure 1 Different Types of Mach Reflection (MR) Occurring at the Wall 

 

2. NEW WALL BOUNDARY CONDITIONS 

The θ-β-M relationship [6] for oblique shock wave reflection is the basis for computing regular shock reflection. The 

schematics of regular oblique shock reflection between two reflecting surfaces are shown in the Figure 1. At the wall 

boundaries, the incident oblique shock wave Mach number, M1, is only slightly more than or just equal to the minimum Mach 
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number necessary for propagation of a straight, attached shock wave so that direct Mach reflection occurs as illustrated in 

Figure 1 instead of regular reflection of weak shock wave. The formation of local subsonic pockets of flow in the vicinity of 

the wall inside the boundary layer in real fluids may cause the reflected wave to be farther removed from the wall. The jump in 

static pressure rise across the reflected shock wave depicted in Figure 2 is cited as another reason for detachment from the 

boundary surface. In a ducted flow, the effect of pressure and velocity are contrary to each other, hence pressure rise at any 

point in the flow is accompanied by a corresponding decrease in velocity. At very high pressure and density prevailing in the 

duct, the expanding shock wave may cause localized subsonic pockets of flow to occur near the point of shock reflection and 

hence the appearance of Mach 

 
Figure 2 Abrupt Pressure Rise across Shock                                          Figure 3 Viscid and Inviscid Discontinuities 

 

stem [7, 8]. Numerically, this abrupt pressure rise at reflection point O in Figure 2 can be controlled by stencil averaging 

[9,10] of density, ρ or Pressure,P and by ensuring local flow velocity, u in the streamwise direction to be fully supersonic so 

that only regular shock reflection occurs at the wall. It is obvious that special treatment of boundary conditions at the wall is 

essential for exact simulation of high speed flows. Additionally, if viscous and thermal diffusion effects are considered by 

using the Navier-Stokes equations then the inviscid discontinuities are transformed into smooth and continuously varying 

transitions instead of step-like transition as shown schematically in Figure 3. The transition distance Δ indicated in Figure 3 is 

about 0.1μm which requires extremely fine resolution mesh to capture internal shock structure. 

The step by step procedure for eliminating Mach reflection is discussed below: 

 

i) First and foremost step is to ensure proper connectivity between point clouds. By mixing the primitive variables of the 

current iteration with the previous one, smooth development of flow is ensured. In practice, this can be realized by using 3-

point finite difference formula for state vector update of flow variable such as density of fluid, ρ, as a modified boundary 

condition: 

 

 (1) 

 

Here, u, and v represent velocities along coordinate directions (i,j). 

 

ii) Apart from the usual boundary conditions of surface tangency of flow (v.n=0) for inviscid flows, the standard 3- or 4-point 

formula normal to the wall is essential to compute the flow variables accurately at reflection points by augmenting the 

standard boundary conditions rather than merely applying the simple finite differencing scheme. The direct implementation of 

4-point formula is not permissible because of steep pressure rise in the viscinity of the wall which may cause the solution to 

diverge. An implementation of combined 3- and 4-point formula at wall boundaries given below helps in computing the 

regular shock pressure P without Mach stem: 

P3 = 0.5*(3*Pi,j+2–Pi,j+3) (2) 

P4 = 0.125*(15*Pi,j+1 – 10*Pi,j+2 +3*Pi,j+3) (3) 

Pi,j = Pi,j + (P3 ─ P4) 

 (4) 

iii) Finally, by either stencil averaging of density or pressure as in (eqn. 5) below or equivalently by applying successive 

relaxation scheme across the shock wave, adverse pressure gradients may be handled easily. Further, by applying time-

dependent technique such as predictor-corrector method that permits mixed subsonic-supersonic flow computations [11] 

desirable smoothing may be achieved. 

ρi,j = (λ÷2)*(ρi-1,j+ρi,j+1+ρi+1,j+ρi,j-1+ρi,j) ÷ 4  (5) 

where diffusive constant, λ is assigned a value ranging from 0.8 to 0.9. In all the above cases, it is emphasized that  these 

modified boundary conditions should be applied strictly at the wall boundaries to avoid distortion resulting from excessive 

smoothing of interior points. 

 

3. TWO-STEP MESHLESS SCHEME 

The above mentioned boundary conditions are implemented in meshless time marching Euler code which is described briefly 

here. An important ingredient of any meshless scheme is the manner in which the connectivity between points is achieved. As 

in grided solver, the geometrical properties such as aspect ratio, fineness or resolution, smoothness and sensitivity that 

determine the accuracy of computation of flow all depend on connectivity. Meshless technique is more akin to unstructured 
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grid but an essential difference between the two exists in the distribution of neighbouring points. In meshless method, the 

nearest neighbours constitute the point cloud whereas in unstructured mesh, two successive points of computation need not be 

adjacent points. The connectivities between neighbouring points are determined by the directional derivatives or gradients of 

flux vector. A second order space discretization that stipulates C2 continuity between grid points forms the basis of the 

numerical scheme. Connectivity is destroyed if the points become collinear, which is surely a degenerate case that should be 

avoided. The popular edge-based meshless method described in literature [12] ensures reciprocity of nodes for proper 

connectivity and permit the use of approximate Riemann solvers for single midpoint flux computation. The fact that various 

Euler codes are based on different methods of computing fluxes makes accurate computation of convective fluxes all the more 

important in the development of flow solver. The procedure for modifying an existing grid-based Euler code to meshless [9-

13] or hybrid code involves evaluating LSQ coefficients, aij and bij , along coordinate directions, finding the sum F (=af+bg) 

of spatial derivative of linearized convective fluxes f and g, and then integrating the discretised Euler equation to steady state 

solution by Runge-Kutta method. In order to ensure proper connectivity between point cloud stencils and to facilitate proper 

flow development, it is essential to smoothen the state vector at every node n as given below: 

Step 1:  

 

Step 2:  (6) 

Here, Q represents the smoothened state vector at node n, q is the current value of state vector, qˆ is its previous 

iteration value, qt is the average value of the state vector of four triangular quadrants denoted as qI, qII, qIII and qIV [10] that 

make up 5-point stencil at point (i,j), ζ is a diffusion constant which is assigned a value of unity for highly diffusive flows such 

as expansion shock and a small fractional value (say 0.1) for all other flows and κ=10-5 introduces artificial compressibility 

into the solution to control expansion shock wave. More details about the two step scheme can be obtained from [9, 10] . 

 

4. VALIDATION TEST CASES 

As part of validation study, two standard tests are considered: i.) A low diffusion problem represented schematically by 

regular oblique shock wave at M=2.9 between two reflecting surfaces in Figure 4 and ii.) A high diffusion problem of 

expansion shock wave in a forward facing step at M=3. The codes employed for this purpose are 2-step, time marching, 

Cartesian meshless generic and CUSP Euler solvers described in [2, 14,15]. 

 

4.1. Regular Oblique Shock Reflection 

This test case establishes the efficacy of the Meshless solvers. The test set up for producing regular reflection must conform to 

the conditions [16] shown in Figure 4. The flow is rendered parallel to the wall by imposing condition (u,v,ρ,p)(x,1,t) = 

(2.61934,-0.50632,1.6999,1.5281) at the upper surface which in effect makes the flow to turn through deflection angle θ1= θ2 

= 10.94º = tan-1(v/u). It is observed that there is close agreement between oblique shock theory and computed results [16,17] 

of generic Euler meshless code for pressure and density in the plane y=0.5 in Figure 5. Also, the regular oblique shock 

reflection for density computed by generic Euler code for 60x20 and 164x40 point cloud distributions illustrated in Figure 6 

indicate exact simulation of incident and reflection angles as that occurring in an ideal regular reflection. 

 
Figure 4 Schematics of Regular Reflection (M=2.9)                                          Figure 5 Comparison between Theory 

Incident Flow Angle β1=29˚ and Mach No. = 2.9     and Computed Pressure and Density 
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Figure 6 Regular Oblique Shock Reflection Using Generic Euler Code for 60x20 and 164x40 Point Cloud 

 

4.2 Expansion Shock Wave 

This test case demonstrates the capability of the code to produce highly accurate results for high speed diffusive flows. In 

Figure 7, the corner at the step of forward facing duct represents a singular point in the flow because it gives rise to expansion 

shock wave. All test cases discussed here are subject to the inlet, outlet and initial conditions shown in Figure 7 with uniform 

point cloud distribution of 240x80 points. The pressure and density contours obtained from CUSP scheme based Euler solver 

is presented in Figure 8. Besides this, the computations from generic Euler code showing the sequence of steps through which 

the flow evolves in the forward facing stepped duct between time t = 0.5 and t = 4 is presented in Figure 9. The new wall 

boundary conditions (eqn. 1 to 4) to eliminate Mach stem occurring in regular reflection has been implemented in a generic 

Euler code [15] and its results of nearly exact numerical simulation of flow phenomena as compared with that of Woodward 

and Collela grided Euler solver [18] is depicted in Figure 10. 

 

 
Figure 7 Forward Facing Step                              Figure 8 Pressure and Density Using CUSP Code 

 

 
Figure 9 Developing Density Contours Computed by 2-Step Generic Euler Code (240x80) 

 

 
Figure 10 Illustration of Effect of Augmented Wall Boundary Conditions Using Generic Euler Code 

 

 

 

5. CONCLUSION 

Cartesian meshless Euler solvers based on CUSP scheme and generic Euler solvers have been validated for complex flow that 

exhibits rarefaction fan, multiple shocks interaction, usually encountered in high supersonic speed wind tunnel tests. The 

coding algorithm presented in this paper adopts new effective techniques of smoothing and scaling in a two-step scheme to 

provide stable solution for high speed flows. Its advantage lies in its simplicity of coding. The Mach stem problem has been 
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successfully tackled by a new set of boundary conditions. The fact that complex flow simulation can be carried out without 

resorting to elaborate methods of clustering the mesh or splitting the fluxes to capture shocks accurately makes it a viable 

technique to implement in advanced CFD codes. While still speculative, meshless methods hold the promise of future 

seamless CFD code development. 
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