VERTEX POLYNOMIAL FOR THE DEGREE SPLITTING GRAPH OF SOME STANDARD GRAPHS

E. Ebin Raja Merly, A. M. Anto

Abstract: The vertex polynomial for the graph $G = (V, E)$ is defined as $V(G, x) = \sum_{k=0}^{\Delta} \nu_k x^k$, where $\Delta(G) = \max_{v \in V} \{d(v)\}$ and ν_k is the number of vertices of degree k. In this paper, we seek to find the vertex polynomial for the degree splitting graph of Comb, Crown, Triangular snake, Quadrilateral snake, Double Triangular snake, Double Quadrilateral snake, $P_n \square K_m$ ($n \geq 2$), $C_n \square K_m$ ($n \geq 3$).

Keywords: Comb, Crown, Triangular snake, Quadrilateral snake, Double Triangular snake, Quadrilateral snake, Double Quadrilateral snake.

1. Introduction

In a graph $G = (V, E)$, we mean a finite undirected simple graph. The vertex set is denoted by V and the edge set by E. For $v \in V$, $d(v)$ is the number of edges incident with v, the maximum degree of G is defined as $\Delta(G) = \max_{v \in V} \{d(v)\}$. For terms not defined here, we refer to Frank Harary [1]. The graph $G = (V, E)$ with $V = S_1 \cup S_2 \cup \ldots \cup S_t \cup T$, where each S_i is a set of vertices having at least two vertices and having the same degree, and $T = V \setminus S_i$. The degree splitting graph of G is denoted by $DS(G)$ and is obtained from G by adding the vertices w_1, w_2, \ldots, w_t and joining w_i to each vertex of S_i, $1 \leq i \leq t$. The graph $G = (V, E)$ is simply denoted by G.

Definition: 1.1

The graph obtained by joining a single pendant edge to each vertex of a path is called Comb.

Definition: 1.2

Any cycle with pendant edge attached to each vertex is called Crown($C_n \square K_1$).

Definition: 1.3

A Triangular Snake T_n is obtained from a path $u_1u_2 \ldots u_n$ by joining u_1 and u_{n+1} to a new vertex v_1 for $1 \leq i \leq n - 1$. That is every edge of a path is replaced by a triangle C_2.

Definition: 1.4

A Quadrilateral Snake Q_n is obtained from a path $u_1u_2 \ldots u_n$ by joining u_i and u_{i+1} to two new vertices v_i and w_i respectively and then joining v_1 and w_i. That is every edge of a path is replaced by a cycle C_4.

Definition: 1.5

The Double Triangular Snake $D(T_n)$ consists of two Triangular snakes that have common path.

Definition: 1.6

The Double Quadrilateral Snake $D(Q_n)$ consists of two Quadrilateral snakes that have common path.

2. Main Results:

Theorem: 2.1

Let G be a Comb with order $2n$, $(n \geq 3)$. Then the Vertex Polynomial of $DS(G)$ is $V(DS(G), x) = x^{n^2} + x^n + (n-2)\cdot 2x^3 + (n+1)x^2$.

Proof:

Let G be a Comb with order $2n$, $(n \geq 3)$. In G, $n - 2$ vertices have degree 3; n vertices have degree 1 and 2 vertices have degree 2. We can construct the graph $DS(G)$ by introducing three new vertices, say w_1, w_2, w_3; make w_1 adjacent to 3-degree vertices, w_2 adjacent to 1-degree vertices, w_3 adjacent to 2-degree vertices. Therefore, we have $n - 2$ vertices have degree 4, $n + 1$ vertices have degree 2, 2 vertices have degree 3, and 1 vertex has degree $n - 2$ and 1 vertex has degree 1. This gives $V(DS(G), x) = x^{n^2} + x^n + (n-2)\cdot 2x^3 + (n+1)x^2$.

Theorem: 2.2

Let G be a Crown with order $2n$, $(n \geq 3)$. Then the Vertex Polynomial of $DS(G)$ is $V(DS(G), x) = 2x^n + nx^4 + nx^2$.

Proof:

Let G be a Crown with order $2n$, $(n \geq 3)$. In G, n vertices have degree 3 and n vertices have degree 1. We can construct the graph $DS(G)$ by introducing two new vertices, say w_1, w_2; make w_1 adjacent to 3-degree vertices and w_2 adjacent to 1-degree vertices. Therefore, we have n vertices have degree 4, n vertices have degree 2 and 2 vertices have degree 1. This gives $V(DS(G), x) = 2x^n + nx^4 + nx^2$.

Theorem: 2.3

1. Assistant Professor in Mathematics, Nesamony Memorial Christian College, Marthandam, India.
2. Research scholar in Mathematics, Nesamony Memorial Christian College, Marthandam, India.
Let G be a Triangular Snake with order $2n - 1, \ (n \geq 3)$. Then the Vertex Polynomial of $DS (G)$ is
\[V(DS(G), x) = x^{n-2} + x^{n+1} + (n - 2)x^5 + (n + 1)x^2 \].

Proof:
Let G be a Triangular Snake with order $2n - 1, \ (n \geq 3)$. In $G, n - 2$ vertices have degree 4 and $n + 1$ vertices have degree 2. We can construct the graph $DS (G)$ by introducing two new vertices, say w_1, w_2; make w_i adjacent to 4-degree vertices and w_{2i} adjacent to 2-degree vertices. Therefore, we have $n - 2$ vertices have degree 5, $n + 1$ vertices have degree 3, 1 vertex has degree $n - 2$ and 1 vertex has degree $n + 1$. This gives
\[V(DS(G), x) = x^{n-2} + x^{n+1} + (n - 2)x^5 + (n + 1)x^2 \].

Theorem 2.4
Let G be a Double Triangular snake with order $3n - 2, \ (n \geq 3)$. Then the Vertex Polynomial of $DS (G)$ is
\[V(DS(G), x) = x^{n-2} + x^{2n-2} + (n-2)x^7 + 2x^4 + (2n-2)x^2 + x^2 \].

Proof:
Let G be a Double Triangular snake with order $3n - 2, \ (n \geq 3)$. In $G, n - 2$ vertices have degree 6; $2n - 2$ vertices have degree 2 and 2 vertices have degree 3. We can construct the graph $DS (G)$ by introducing three new vertices, say w_1, w_2, w_3; make w_i adjacent to 6-degree vertices, w_{2i} adjacent to 2-degree vertices, w_{3i} adjacent to 3-degree vertices. Therefore, we have $n - 2$ vertices have degree 7, $2n - 2$ vertices have degree 3, 2 vertices have degree 4, 1 vertex has degree 2. We can construct the graph $DS (G)$ by introducing three new vertices, say w_1, w_2, w_3; make w_i adjacent to 6-degree vertices, w_{2i} adjacent to 3-degree vertices, w_{3i} adjacent to 3-degree vertices. Therefore, we have $n - 2$ vertices have degree 5, $2n - 2$ vertices have degree 3, 1 vertex has degree $n - 2$ and 1 vertex has degree 2. This gives
\[V(DS(G), x) = x^{n-2} + x^{2n-2} + (n-2)x^7 + 2x^4 + (2n-2)x^2 + x^2 \].

Theorem 2.5
Let G be a Quadrilateral Snake with order $3n - 2, \ (n \geq 3)$. Then the Vertex Polynomial of $DS (G)$ is
\[V(DS(G), x) = x^{n-2} + x^{2n-2} + (n-2)x^7 + 2x^4 + (2n-2)x^2 + x^2 \].

Proof:
Let G be a Quadrilateral Snake with order $3n - 2, \ (n \geq 3)$. In $G, n - 2$ vertices have degree 6; $2n - 2$ vertices have degree 2 and 2 vertices have degree 3. We can construct the graph $DS (G)$ by introducing three new vertices, say w_1, w_2, w_3; make w_i adjacent to 6-degree vertices, w_{2i} adjacent to 3-degree vertices, w_{3i} adjacent to 3-degree vertices. Therefore, we have $n - 2$ vertices have degree 5, $2n - 2$ vertices have degree 3, 1 vertex has degree $n - 2$ and 1 vertex has degree 2. This gives
\[V(DS(G), x) = x^{n-2} + x^{2n-2} + (n-2)x^7 + 2x^4 + (2n-2)x^2 + x^2 \].

Theorem 2.6
Let G be a Double Quadrilateral snake with order $5n - 4, \ (n \geq 3)$. Then the Vertex Polynomial of $DS (G)$ is
\[V(DS(G), x) = x^{n-2} + x^{2n-4} + (n-2)x^7 + 2x^4 + (4n - 4)x^3 + x^2 \].

Proof:
Let G be a Double Quadrilateral snake with order $5n - 4, \ (n \geq 3)$. In $G, n - 2$ vertices have degree 4 and $2n$ vertices have degree 2 and 2 vertices have degree 3. We can construct the graph $DS (G)$ by introducing three new vertices, say w_1, w_2, w_3; make w_i adjacent to 6-degree vertices, w_{2i} adjacent to 3-degree vertices, w_{3i} adjacent to 3-degree vertices. Therefore, we have $n - 2$ vertices have degree 7, $4n - 4$ vertices have degree 3, 2 vertices have degree 4, 1 vertex has degree 2. We can construct the graph $DS (G)$ by introducing three new vertices, say w_1, w_2, w_3; make w_i adjacent to 6-degree vertices, w_{2i} adjacent to 3-degree vertices, w_{3i} adjacent to 3-degree vertices. Therefore, we have $n - 2$ vertices have degree 5, $2n - 2$ vertices have degree 3, 1 vertex has degree $n - 2$ and 1 vertex has degree 2. This gives
\[V(DS(G), x) = x^{n-2} + x^{2n-4} + (n-2)x^7 + 2x^4 + (4n - 4)x^3 + x^2 \].

Theorem 2.7
Let G be $P_n \bigcirc R_{m,n} (n \geq 2)$. Then the Vertex Polynomial of $DS (G)$ is
\[V(DS(G), x) = x^{n-2} + x^{m-n} + (n-2)x^m + 2x^{m+2} + (mn + 1)x^2 \].

Proof:
Let G be $P_n \bigcirc R_{m,n} (n \geq 2)$. $n - 2$ Vertices have degree $m + 2$, 2 vertices have degree $m + 1$ and mn vertices have degree 1. We can construct the graph $DS (G)$ by introducing three new vertices, say w_1, w_2, w_3; make w_i adjacent to $(m + 2)$-degree vertices, w_{2i} adjacent to $(m + 1)$-degree vertices, w_{3i} adjacent to 1-degree vertices. Therefore, we have $n - 2$ vertices have degree $m + 3$, 2 vertices have degree $m + 2$, $(mn + 1)$ vertices have degree 2, 1 vertex has degree 4 and 1 vertex has degree 1. This gives
\[V(DS(G), x) = x^{n-2} + x^{m-n} + (n-2)x^m + 2x^{m+2} + (mn + 1)x^2 \].

Theorem 2.8
Let G be $C_n \bigcirc R_{m,n} (n \geq 3)$. Then the Vertex Polynomial of $DS (G)$ is
\[V(DS(G), x) = x^n + x^{mn+1} + nx^{m+2} + mnx^2 \].

Proof:
Let G be $C_n \bigcirc R_{m,n} (n \geq 3)$. In G, n vertices have degree $m + 2$ and mn vertices have degree 1. We can construct the graph $DS (G)$ by introducing three new vertices, make w_i adjacent to $(m + 2)$-degree vertices and w_{2i} adjacent to 1-degree vertices. Therefore, we have n vertices have degree $(m + 3)$, mn vertices have degree 2, 1 vertex has degree 4 and 1 vertex has degree 1. This gives
\[V(DS(G), x) = x^n + x^{mn+1} + nx^{m+2} + mnx^2 \].

References: