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I. INTRODUCTION 
Residue Number System (RNS) is a non-weighted integer number system that supports carry free addition, borrow free 
subtraction, and digit by digit multiplication without the generation of partial products. This makes it a good candidate for 
high performance, low power consumption, fault-tolerant computing, and secure Digital Signal Processing (DSP) 
applications [1]. For this reason, RNS has received considerable attention in DSP applications requiring intensive 
computations e.g., digital filtering, Fast Fourier Transform, Discrete Cosine Transform and so on [2]. DSP hardware based on 
RNS is becoming an important factor in obtaining high speed and high precision at low cost [3]. 
The major issues in the efficient design of RNS based processors are: moduli set selection, residue arithmetic unit, and Data 
conversion [4]. The main obstacle to the widely utilization of RNS has to do with the following difficult RNS arithmetic 
operations: magnitude comparison, overflow detection, division, sign detection, moduli set selection, forward conversion, 
and reverse conversion. It is worth noting that, for a successful RNS implementation, moduli set selection and reverse 
conversion are the most critical issues [3], [5]. Thus, a carefully selected moduli set with its efficient associated reverse 
converter could improve the overall performance of the RNS architecture and therefore increase its applicability [4]. Each 
RNS architecture is based on a moduli set, which involves a set of pair-wise relatively prime integers and, the RNS 
architecture complexity and speed heavily depends on the selected moduli set [5]. 
As mentioned earlier, the key to any successful RNS based processor design, is how efficiently RNS to binary conversions 
can be performed. Up to date, many reverse conversion algorithms have been proposed for different classes of moduli sets, 

and each one of them has been claimed to be advantageous in certain cases.For e.g., 11,2,22  nnn
 [6], [7], 

 11,2,22 1  nnn
 [8],  nnn 1,21,22 11  

 [9],  11,2,22 22  nnn
 [10] with their associated residue to binary 

converters have been proposed. Recently,  nnn 1,21,22 1222  
 moduli set with n5  bit Dynamic Range (DR) and its 

associated residue to binary converter has been proposed in [11], while an improved converter was introduced in [12]. 

Given that applications requiring larger DR than the moduli set  nnn 1,21,22 1222  
 are of practical interest, we 

present in this paper a novel moduli set  121222 1,21,22   nnn
 and its associated reverse conversion algorithm. The 

proposed moduli set has a larger DR and it is more balanced when compared with  nnn 1,21,22 1222  
, and exhibits 

some interesting number theoretic properties that enable effective reverse converter architectural design. The choice of this 
moduli set is for overcoming the intensive modulo operations involved in the implementation of most state of the art reverse 

converter algorithms and in the same time to provide a larger DR for length 3  moduli sets. The proposed reverse converter is 
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Abstract-In this paper, a novel length-3 moduli set  121222 1,21,22   nnn
 with its associated adder based reverse 

converter is presented. The proposed moduli set provides 75%  larger Dynamic Range, for the same n  value when 
compared with state of the art counterparts. Additionally, it possesses some interesting number theoretic properties which 
makes it suitable for the realization of an efficient reverse converter based on the New Chinese Remainder Theorem. 

Theoretically speaking, the resulting residue to binary converter has a delay of MUXFA ttn 27)(6   with an area cost of 

10)(12 n FA, which substantially outperforms state of the art equivalent reverse converters. To assess the practical 

implications of our proposal we implemented it and equivalent state of the art counterparts in FPGA. The experimental 

results indicate that on average, our proposal reduces the hardware resource requirements by 34%, while being 19%  
faster.   
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based on the New Chinese Remainder Theorem (New CRT I) and has a delay of MUXFA ttn 27)(6   with an area cost of 

10)(12 n FA, where FAt , MUXt , and FA  area Full Adder delay, 1:2  Multiplexer delay, and Full adder are, 

respectively. Theoretically speaking, our proposed reverse converter substantially outperforms existing equivalent state of the 
art in terms of area and delay for a substantially larger DR. To assess the practical implications of our proposal we 
implemented it and equivalent state of the art counterparts in FPGA. The experimental results suggest that, on average our 

scheme reduces the area requirements by 34% and is about 19%  faster. 
The remaining of this paper is structured as follows. In Section II, a brief background on reverse conversion methods is 
presented. The novel moduli set is introduced in Section III and the associated reverse conversion technique is presented in 
Section IV. Section V describes the hardware implementation of the proposed scheme and theoretically evaluates and 
compares its performance against existing state of the arts. In Section VI, we present an experimental assessment of the 
efficiency of the proposed and related state of the art converter. This paper is concluded with some final remarks in Section 
VII. 

 
II. BACKGROUND 

RNS is defined in terms of a set of relatively prime moduli set   kiim 1,= , such that 1=),( ji mmgcd  for ji  , where 

),( ji mmgcd  means the greatest common divisor of im  and jm , while i

k

i
mM  1=

= , is the DR. The residues of a 

decimal number X  can be derived as 
imi Xx = , this implies that X  can be represented in RNS as 

iik mxxxxxX <),0,...,,,(= 321  . It is important to note that this representation is unique for any integer 

 10,  MX  and that 
im

X  denotes X  mod im  operation and is defined as ii bmxX =  for some integer 

b ii mx <0  . Given a moduli set   kiim 1,= , to convert residues ),...,,( 21 kxxx  into its corresponding decimal number 

X , the traditional CRT, New CRTs, and Mixed Radix Conversion (MRC) are generally used [3]. For the CRT, the decimal 
number X  is computed as:  

 
M

i
imii

k

i

xMmX 1

1=

=   (1) 

 where i

k

i
mM  1=

= , 
i

i m

M
M =  and 1

iM  is the multiplicative inverse of iM  with respect to im . 

Alternatively, given a moduli set   1,3=iim , the residues ),,( 321 xxx  can be converted into the corresponding decimal 

number X  using the New CRT I as follows [14]:  

 ,)()(=
32

232212111 mm
xxmkxxkmxX   (2) 

  where,  

 1,=
32

11 mm
mk  (3) 

 1.=
3

212 m
mmk  (4) 

 
 

III.  121222 1,21,22   nnn
 MODULI SET 

For a given RNS moduli set to be valid, it is required that all the elements in the moduli set are co-prime. Thus, in order to 
prove that the proposed set can be utilized for the construction of a valid RNS architecture, we have to demonstrate that the 

moduli 11,22 1222   nn
, and 122 n  are pair-wise relatively prime. 

 
 
 

Theorem 1 The moduli 11,22 1222   nn
, and 122 n  are pair-wise relatively prime numbers.  

Proof. It has already been demonstrated that 1=1)1,2(2 1222   nngcd , and 1=)1,2(2 1212   nngcd  in [11] and 
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[13], respectively. We therefore need to only show that 12 22 n  and 122 n  are coprime. From the Euclidean theorem, 

),(=),(
b

abgcdbagcd , therefore, 1=1),(2=)1(2,(2=)1,2(2 12
122

22121222  


 n
n

nnnn gcdgcdgcd . 

Thus, from these results, it can be concluded that,  121222 1,21,22   nnn
 moduli set contains relatively prime numbers 

and it is a valid RNS moduli set.   □ 
 

IV. REVERSE CONVERSION TECHNIQUE 

Given the residues  321 ,, xxx  with respect to the moduli set  121222 1,21,22   nnn
, we present a NEW CRT 1 

based residue to binary converter as follows:  

Theorem 2 Considering the proposed moduli set  11,2,22 221212   nnn
, the following holds true:  

 3)(2=)(2= 22

1)221)(212(2

112
1  


 n

nn
nk  (5) 

 

 4=1)))(2((2=
1222

11212
2 




n
nnk  (6) 

 
 

Proof. If it can be demonstrated that 1=)2)(3(2
1122

2212


  n

nn , then 3)(2 22  n
 is the multiplicative inverse of 

122 n  with respect to 1)1)(2(2 2212   nn
. 1=)2)(3(2

1)221)(212(2

2212


  nn

nn
, thus, Equation (5) holds true. 

Similarly, if 1=41))(2(2
1222

1212


  n

nn , then 4  is the multiplicative inverse of 1))(2(2 1212  nn
 with 

respect to 12 22 n . 1=12=22=41))(2(2
12221222

4432

1222

1212







  nn

nn
n

nn , Thus, Equation (6) 

also holds true.   □ 
 
 

Theorem 3 For the moduli set  11,2,22 221212   nnn
, the decimal equivalent of the RNS number ),,( 321 xxx  can be 

computed as follows:  

 12
1 2=  nxX  (7) 

 where,  

   TTn 122=  (8) 

 

 
12223

2
1

2 )22(2=
 nxxT   (9) 

 

 
112212 )(=

 nxx  (10) 

 
 

Proof. Let 1,2=,2= 12
2

12
1  nn mm  and 12= 22

3 nm . Substituting these values of 321 ,, mmm  and that of 1k  

and 2k  from (5) and (6), respectively, into (2), we obtain:  

 )3)((22= 12
2212

1 xxxX nn    

 ,)1)((22
1)221)(212(223

122


  nn

n xx  (11) 

 Rewriting (11), we have:  

 ,2=
1)221)(212(2

12
1 

 nn
n TxX  (12) 

 where,  

 ),1)((22)3)((2= 23
122

12
22 xxxxT nn    



A Novel Reverse Converter For A New Length-3 Moduli Set    130 
 

 

 Applying the property: 
1

2
1

1
21

=
m

m

mm
T

m

T
mT 








 [15] to (12), and simplifying further, we obtain:  

 )(2= 12
1

 nxX  (13) 

 where,  

 
11221212

212 2)(21)(2=


  n
n xxxx  

 
1122121)22(223

2 )(2


  nn xxxx  (14) 

 For the sake of completeness, we have:  

   Tn 1)(2= 12
 (15) 

 

 
11221212

2 2)(2=
 nxxxxT  

 
1)22(223

2 )(2
 nxx  (16) 

 

 
112212=

 nxx  (17) 

 It can be observed that (16) can be further simplified to obtain:  

 
12223

2
1

2 222=
 nxxT                                                □ (18) 

 
We proceed to further reduce the hardware complexity of (13) by utilizing the following properties [6]: 

Property 1: The multiplication of a residue number by k2  in modulo 1)(2 p
 is computed by k bit circular left shifting 

Property 2: A negative number in modulo 1)(2 p
 is calculated by subtracting the number in question from 1)(2 p

. In 

binary representation, the ones complement of the number gives the result.  

Let the residues ),,( 321 xxx  have binary representation as follows:  

 )...(=
12

1,01,111,21,21
  





n

nn xxxxx  (19) 

 

 )...(=
12

2,02,112,2,22
  





n

nn xxxxx  (20) 

 

 )...(=
22

3,03,13,213,23
  





n

nn xxxxx  (21) 

Rewriting (18) and simplifying the various parameters using properties 1 and 2, we obtain: 
122221 2=

 nrrT  , 

'
3

'
3=2  rr  therefore 

1222

'
3

'
321=


 nrrrrT .  

 
12221

2
1 2=

nxr  

 
  

22

1,21,021,211,2 0...=




n

nnn xxxx  (22) 

 

 
12223

2
2 2=

 nxr  

 
  

22

3,213,23,023,213,2 ...=




n

nnnn xxxxx  (23) 

 

 
122211222

'
3 =

 nnxr  
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  

22

2,012,22,2 0...=




n

nn xxx  (24) 

 

 
122211221

'
3 =


  nnxr  

 
  

22

1,011,21,2 1...=




n

nn xxx  (25) 

 Similarly, from (17):  

 
112212=

 nxx  

 ''=   (26) 
 

 
  

12

2,012,22,2
' ...=





n

nn xxx  (27) 

 

 
  

12

1,011,21,2
' ...=






n

nn xxx  (28) 

 
 

V. HARDWARE REALIZATION AND PERFORMANCE ANALYSIS 

The hardware structure of the proposed reverse converter for the novel moduli set  11,2,22 221212   nnn
 is based on 

(13). As it can be observed in Figure 1, the reverse converter architecture consists of a 1)(2 n -bit and a 2)(2 n -bit 

Carry Save Adder (CSA) with End Around Carry (EAC), a parallel 1)(2 n -bit and 2)(2 n -bit modulo 1)(2 12 n
 and 

1)(2 22 n
 adder, respectively, and a 3)(4 n -bit Carry Propagate Adder (CPA). First of all, the realization of (13) is the 

resultant of the reduction of modulo 1)1)(2(2 2212   nn
 operation in (12) into two parallel modulo operations 

1)(2 12 n
 and 1)(2 22 n

. The reduction is without any hardware resource requirments. The parameters '
321 ,, rrr  and 

'
3
r  are added by two cascaded 2)(2 n -bit CSAs with end around carry resulting in the values 2s  and 2c . These values 

are further reduced to one number T  with CPA2. Similarly, in parallel '  and '  are added with CPA1. To speed up these 

EAC parallel additions, we utilize anticipated computation, where 22 cs   and 33 cs   are computed for both 0=cin  and 

1=cin , then we select the right result with a 1:2  MUX. The implementation of (8) involves a  3)(4n bit CPA. 

Finally, the computation of (7) is achieved simply by a concatenation operation, which does not require any additional 
hardware resources. From the above, it can be deduced that the proposed RNS to binary converter make use of 10)(12 n  

FA and has a delay of MUXFA ttn 27)(6  . 

Next, we compare our reverse converter with equivalent best state of the art residue to binary converter presented in [13] in 
terms of both delay and hardware resources requirement. For the sake of completeness, we also include the reverse converters 
presented in [16] and [17] in the comparison to demonstrate that our scheme satisfactorily can compete with other state of the 

art reverse converters associated with length 4  moduli sets with n6  bit DR. We also note that the proposed moduli set 

provides a DR about 75%  larger for the same n  value when compared with state of the art counterparts. Theoretically 
speaking, the proposed scheme requires 10)(12 n FA hardware resources. Table I summarizes the area and delay of the 

considered converters and one can observe that our scheme outperforms the related state of the arts in terms of conversion 
time while requiring slightly larger area than [16] but substantially less area than those presented in [13] and [17]. 

 
Table  1: Theoretical Area and Delay Comparison  

 
 

Converter
s  

 [13]   [16]   [17]   Proposed Converter 

Moduli  1,21,22 21212   nnn  1,21,21,22 22  nnnn  1,21,21,22 122  nnnn  11,2,22 221212   nnn
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Set      

Dynamic 
Range  

n6 -bits  n6 -bits n6 -bits  n6 -bits  

FA  3)(18 n  610 n  116 n  1012 n  
Delay  

MUXFA ttn 26)(8   FAtn 3)(8   FAtn 2)(8   MUXFA ttn 27)(6   

 
 

 
Figure  1: Block diagram for the Proposed Converter 

 

 
 
 

VI. EXPERIMENTAL RESULTS 
The circuits of the proposed and related best state of the art reverse converters were described in synthesizable VHDL and 
synthesized on Spartan 6 xc6slx45-3fgg484 FPGA with Xilinx ISE 14.3 for a wide range of n  values. The performance of 
the converters were evaluated in terms of area expressed by the number of occupied slice LUTs and the delay in nano 
seconds (ns). The results are presented in Table 2 and indicate that on average, the proposed converter reduces the area by 

34% and delay by 19%  when compared with the one presented in [13]. In comparison with the reverse converter in [16], 

the proposed reverse converter reduces the area by 1.0% , while it is 4.15%  faster. Similarly, with respect to the 

counterpart converter presented in [17], our scheme substantially reduces the area and the conversion delay by 34.17% and 

33.29%, respectively.  
Table  2: Experimental Delay and Area Comparison 
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VII. CONCLUSIONS 
In this paper, we proposed a novel moduli set with its associated reverse converter based on the New CRT. The proposed 

moduli set offers a DR about 75%  larger for the same n  values when compared with state of the art counterparts. Based on 
the interesting number theoretic properties inherent with the proposed moduli set, an efficient residue to binary converter is 
designed. From the theoretical point of view, our proposal outperforms the related state of the arts in terms of conversion 
time while requiring slightly larger area than [16] but substantially less area than [13] and [17]. Further, to also assess the 
practical implications, we implemented in FPGA the proposed scheme and state of the art counterparts.The digital circuits of 
the proposed and related best state of the art reverse converters were described in synthesizable VHDL and synthesized on 
Spartan 6 xc6slx45-3fgg484 FPGA with Xilinx ISE 14.3 for a wide range of n  values. The experimental results presented in 

Table 2 suggests that, on average, the proposed converter reduces the hardware resource requirements by 34% and the 

conversion delay by 19%  when compared with the one presented in [13]. Also, in terms of delay, our proposal is about 

19%  speed up of conversion time. Additionally, in comparison with the reverse converter presented in [16], our proposal 

reduces the area by 1.0% , while it is 4.15%  faster. Similarly, with respect to the counterpart converter presented in [17], 

our scheme substantially reduces the area by 34.17% and the delay by 33.29%. 
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