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I.INTRODUCTION  
With more and more cores packaged in a Chip Multiprocessor (CMP), memory hierarchy is becoming one of the key design 
problems. But unfortunately, for almost all of computer architectures, quantitative evaluation of memory subsystems is possibly 
only by using simulators [1]. In other words, simulation is indispensable for a computer architect. Yet even as many simulators 
and other simulating methods have been presented for CMP researchers, to date there is still some main problems remained 
unsolved. One such a problem is unbearable simulating speed. It is virtually impossible to simulate all benchmarks of a whole 
suite to completion, especially by using those full-system simulators [1]. Typically, an architect simulates a subset of benchmarks, 
using a reduced or truncated input set or a representative set instead, to minimize the simulating time. As a result of trading speed 
for accuracy, these simulators bring out the second problem: poor accuracy, while an evaluation with poor accuracy is un-trusted. 
Besides, these simulators are often hard to use or to implement new architecture solutions. To address these problems, this paper 
proposes a fast and cycle accurate memory subsystem evaluation framework, called gem5 simulator. 

II. RELATED WORK 
During the past decades, many simulators have been used in architecture performance evaluation and optimization field. 
Practically, there are three main types of them: execution-driven simulation, instrumentation-driven simulation and trace-driven 
simulation. Execution-driven simulation relies on existing functional performance models to execute a binary application [2], [3], 
[4], [5]. The functional performance model provides the memory addresses in real time. A cache simulation model starts after 
receiving the access information. GEMS [4], as a simulation tool set, is a typical case of execution-driven simulator, created by 
Wisconsin Multifaceted Project, to characterize and evaluate the performance of multiprocessor hardware systems. Fahringer et 
al. [5] have used an execution-driven model to analyze performances of distributed and parallel systems. Woo et al. [2] have also 
used an execution-driven simulating model with the Tango Lite Tracing tool [3].  
An instrumentation-driven simulator uses a dynamic binary instrumentation tool to gather the running information of an 
application at any expected instrumented point [6], [7]. Then, after receiving the running information such as memory addresses, 
the cache model works. A binary instrumentation approach is relatively faster, suitable for conducting accurate memory 
performance studies. Jaleel et al. [6] have described an instrumentation-based approach to characterize memory behaviors of 
workloads. They use CMPsim, an instrumentation driven memory simulator, to evaluate the memory performance. Since binary 
instrumentation normally occurs at native execution speed, an instrumentation-driven simulator can run at MIPS (Million 
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Instructions Per Second) speed. However, they do not simulate a detailed timing model, and do not provide a prefacer either. 
Above all, CMPsim is not available to public.  
A trace-driven simulator uses some specific tool(s) to collect the memory references (called an address trace) of a running 
application, and applies the trace sequence to the simulation model to mimic the way that a real processor might exercise the 
design [8], [9]. A trace-based simulation method is conceptually simple, and easy to reappear experimental results. Since 
functional models of modern ISAs are considerable slow and complicated to be built. Trace-driven simulation is more popular for 
conducting memory subsystem performance studies [8], such as the performance characterization and performance optimization. 
Uhlig et al. [8] have made a detailed survey for existing trace-driven simulators. They have investigated more than 50 trace-driven 
simulators and showed that none of them is best when all criteria (including accuracy, speed, memory, flexibility, portability, 
ease-of-use, etc.) are considered together. Simple Scalar [9] is one of the hugely popular set of simulation tools during the past 15 
years. But in this multicore era, on-chip cache access model cannot be applied to it directly. Other researchers have also proposed 
simulation environments to meet their own research needs. Li et al. [10] use IBM’s Turandot Power Timer to generate single-core 
L2 cache access traces that are annotated with timestamps and power values, then feed these traces to a cache simulator developed 
by themselves. The simulator uses hits and misses to shift the time and power values in the original traces. They propose joint 
optimization across multiple design variables. Bononi et al. [11] use OMNeT++ simulation Framework to analysis some 
architectures for network on chip. Sun et al. [12] construct a prototype using a public domain network simulator ns-2 and 
evaluated design options for a specific network-on chip (NoC) architecture. In summary, to our knowledge, few researchers have 
comprehensively considered many cores and mutual effects of timing components under the CMP environment; namely, CMP 
researchers still lack of a useful timing-detailed memory subsystem performance model to support the x86 CMP platform. Some 
full system simulators such as SIMICS [13] and M5 [14] do support x86 ISA, but they are bulky and emulate the whole system 
with peripherals and the operating system: apt to be accurate but much slower. It is expected that this paper fills the gap. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. The execution time comparison of SPEC CPU2006 benchmarks for various configurations. The configurations of L1/L2 cache latency, TLB, and L2 cache 
replacement policy are same as TABLE II, and the rest of the configurations is same as TABLE I. Note that the Config #5 has the minimum error rate of 4.4% 
compared to Nexus 5. 
 
TABLE I MOBILE FULL-SYSTEM SIMULATOR CONFIGURATION AND NEXUS 5 SPECIFICATION 
 

Type Mobile Full-System Simulator based on 
gem5 

Nexus 5 

Execution 
Core 

300Mhz ∼ 2.26GHz quad-core CMP, ARM 
ISAs, out of order, tournament 
branch predictor, 4,096 BTB entries, 64 reorfer 
buffer, 32 fetch queue 

300Mhz ∼ 2.26GHz quad-core Krait 
400, 11 stage integer pipeline with 3-
way decode, 4-way out-of-order 
speculative issue superscalar execution, 
7 execution ports, Pipe lined VFPv4, 
128-bit wide NEON 

GPU - Adreno 330, 450 MHz 
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III. PERFORMANCE VALIDATION OF FULL-SYSTEM SIMULATION BASED ON ARM ARCHITECTURE CPU MODELS  
In [15] [16], the authors evaluated the performance accuracy of the gem5 full system simulator based on ARM architecture CPU 
models by comparing the execution times of benchmarks on hardware development boards. Butko et al. [15] used three types of 
benchmarks, which are SPLASH-2 for scientific research, ALP Bench for media, and STREAM for engineering, on the Snowball 
SKY-9500-ULP-C01 development kit. Gutierrez et al. [16] used SPEC CPU2006 and PARSEC benchmarks on the versatile 
express TC2 board. They could achieve accuracy within 20% error rate on average. However, they did not verify their method on 
the mobile platform such as Android, and did not use real mobile applications. We evaluate web browsing performance and the 
execution times of SPEC CPU2006 benchmarks on Android-based full-system simulation in comparison with Nexus 5. 
 
TABLE II CONFIGURATIONS FOR VALIDATING SIMULATION PERFORMANCE 
 

Configuration #1 #2 #3 #4 #5 
L1 Cache 
Latency 
(cycles) 

2 6 6 6 6 

L2 Cache 
Latency 
(cycles) 

20 20 44 44 44 

TLB Entry 
(count) 

64 64 64 32 32 

L2 Cache 
Replacement 

LRU LRU LRU LRU RANDOM 

Caches L1 I/D-cache: 16kB, 4-way, private, 64B block 
size, LRU, 4 mshrs, 6 hit latency 
L2 cache: 2MB, 8-way, shared, 64B block size, 
random, 20 mshrs, 44 hit latency 

L0 I/D-cache: 4kB direct mapped, L1 
I/D-cache: 16kB, 4-way 
L2 cache: 2MB, 8-way 

DRAM LPDDR3 800MHz, 2GB, Dual-channel, 32-bit 
bus width, 8 banks per rank, 
4kB row buffer size, 1 rank per channel 

LPDDR3 800MHz, 2GB, Dual-channel, 
32-bit bus width (12.8GBps) 

TLB I-TLB: ArmTLB type, 32 entry, D-TLB: 
ArmTLB type, 32 entry 

I-TLB: 32 entry, D-TLB: 32 entry 

Type Mobile Full-System Simulator based on 
gem5 

Nexus 5 

Execution 
Core 

300Mhz ∼ 2.26GHz quad-core CMP, ARM 
ISAs, out of order, tournament 
branch predictor, 4,096 BTB entries, 64 reorfer 
buffer, 32 fetch queue 

300Mhz ∼ 2.26GHz quad-core Krait 
400, 11 stage integer pipeline with 3-
way 
decode, 4-way out-of-order speculative 
issue superscalar execution, 7 execution 
ports, Pipe lined VFPv4, 128-bit wide 
NEON 

GPU - Adreno 330, 450 MHz 

Caches L1 I/D-cache: 16kB, 4-way, private, 64B block 
size, LRU, 4 mshrs, 6 hit latency 
L2 cache: 2MB, 8-way, shared, 64B block size, 
random, 20 mshrs, 44 hit latency 

L0 I/D-cache: 4kB direct mapped, L1 
I/D-cache: 16kB, 4-way 
L2 cache: 2MB, 8-way 

DRAM LPDDR3 800MHz, 2GB, Dual-channel, 32-bit 
bus width, 8 banks per rank, 
4kB row buffer size, 1 rank per channel 

LPDDR3 800MHz, 2GB, Dual-channel, 
32-bit bus width (12.8GBps) 

TLB I-TLB: ArmTLB type, 32 entry, D-TLB: 
ArmTLB type, 32 entry 

I-TLB: 32 entry, D-TLB: 32 entry 
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IV. GEM 5 ENHANCEMENTS  
Our simulator is an enhanced version of gem5. First, we made two simulated systems, which are an Android-based mobile system and an 
embedded Linux based server system, and they are connected by a simulated Ethernet. gem5 supports only Alpha systems for connected 
two systems simulations [17]. We modified the configuration files of gem5 to allow two simulated systems that support ARM 
architectures to use a network with IP addresses. Second, we upgraded the Android version to Jelly Bean 4.1, while gem5 supports the 
ICS 4.0 version. Before the Jelly Bean 4.1 version, Android uses the display event thread in surface flinger, which composes all surfaces 
into a single display buffer. The thread generates many instructions because of no sleeping thread due to software rendering without a 
GPU. From the Jelly Bean 4.1 version, Android uses the vsync thread that sleeps for the designated duration while waiting for a next 
sync event. Third, we use a reconfigured Linux Kernel with version 3.14, which enables networking and the netem tool to be used. 
Fourth, we modified the DVFS handler in gem5 to enable two-system simulations. The original DVFS handler in gem5 has a problem of 
handling only one system, when two simulated systems are working. Finally, we modified the output mechanism of the simulation for 
each application trace. Our simulator can dump out simulation results when a context switching of processes occurs or at every 
designated periodic time. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. L1 I/D-cache miss rates for configuraiton #2 in TABLE II. Notethat the benchmarks, which have high error rates such as h264 (21.3%),mcf (30.2%), 
omnetpp (20.6%), and sjeng (22.0%), have higher miss rates for L1 I/D cache than other benchmarks, which are bzip2 (13.4%), libquantum (0.9%), and omnetpp 
(2.5%). This means L2 cache hit latency is the one of error causes. 
 

V. PERORMANCE VALIDATION USING NEXUX-5 
To minimize performance errors of our simulator, we validated execution times of simulations, which run SPEC CPU2006 and 
BBench benchmarks, by comparing with Nexus 5. As a result, we discovered the cache hit latency and replacement policy are 
very important factors. 

 
1) Execution Time Comparison using SPEC CPU2006 
benchmarks: To evaluate CPU performance, we chose seven benchmarks from SPEC CPU2006, and we prepared execution 
binaries for the ARM architecture to run on Nexus 5 and our simulator. We also controlled input parameters of each benchmark 
for appropriate execution times on CPU core 0 in the simulations. At first, we used default configurations, which are given in 
gem5, which is configuration #1 in TABLE II. 

 
Fig. 3. The miss latencies of L1 D-cache and L2 cache for configurations #4 and #5. We can see that the benchmarks, which have high error rates with 
configuration #4 such as mcf (11.9%) and sjeng (9.9%), has the larger differences of miss latency between random and LRU replacement policies of L2 cache 
than other benchmarks. This means the performance with configuration #5 is more accurate than other configurations. 
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However, execution times of all benchmarks in the simulation are almost about a half of actual execution times, in which the 
average error rate is 51.9%, in Nexus 5, as shown in Fig. 1. To reduce the error rate, we applied the configurations #2 and #3 
based on the experimental results of 7-Zip LZMA benchmark [18] and our observations. We can see that h264, omnetpp, and 
sjeng have high L1 I-cache miss rates, and bizp2, lib-quantum, and mcf have high L1 D-cache miss rates, as shown in Fig. 2. 
Those benchmarks also have the highest error rates with configuration #2. High L1 cache miss rates mean that those benchmarks 
need many L2 cache accesses. In addition to hit latency of caches, we discovered that the cache replacement policy is important to 
reduce performance errors. We can see that the error rates for execution times of mcf and sjeng are only 10%, as shown in the 
Config #5 bar of Fig. 1. So, we adopted the random replacement policy into the L2 cache instead of the LRU policy based on an 
ARM reference manual [19] and our observations. These replacement policies make a difference to L2 cache latency only for 
mcf, sjeng, and bzip2, as shown in Fig. 3. Thereby, we can confirm that the hit latencies of L1 and L2 caches and the L2 cache 
replacement policy are the main reasons for performance errors. We achieved the error rate of only 4.4% with configuration #5. 

VI. POWER MODELS 
Energy converters, which were introduced in Section IV, are based on our power models of the main components of a mobile 
system: CPU/caches, DRAM, network interfaces (3G/4G/WiFi), and display. Because our power models are based on a statistics 
file, which is the results of a full-system simulation, and a system configuration file, we can analyze not only the overall energy 
consumption of a mobile system, but also the energy consumption of each hardware component. In addition to the analysis of the 
hardware energy consumption, our energy converters with power models allow us to analyze the energy consumption of each 
application. 

 
A. Power Modeling of Main Components of a Mobile System 
1) CPU/Caches: Our power model for CPU and caches is based on the McPAT framework [26] and its ARM Cortex-A9 CPU 
power model, which provides multi-core processor configurations with out-of-order processor cores _NumCores Pcore, a shared 
cache PL2Cache, a network onchip PNoC, a memory controller PMC, a flash controller PFC, a PCIe controller PPCIeC, and a 
network interface unit PNIU, as shown in the following Equation (1): 
 
Pcpu = NumCores_ Pcore + PL2Cache+ PNoC + PMC + pFC + PPCIeC + PNIU    (1) 

 
Each Pcore consists of five units: the instruction fetch unit PIF , renaming unit PR, load store unit PLS, memory management 
unit PMM, and execution unit PE, as shown in the following Equation (2): 

 
Pcore = PIF + PR + PLS + PMM + PE (2) 
To calculate the energy consumption based on CMOS circuits for Equation (1) and Equation (2), we need various parameters of 
dynamic, short-circuit, and leakage power [26], as shown in Equation (3), where α is an activity factor, C is total load capacitance, 
Vdd is supply voltage, ΔV is voltage swing during switching, fclk is a clock frequency, ES is shortcircuit energy per switch 
operation, and Ileakage is leakage current: 
 
PCMOS = αCVddΔV fclk + αESfclk + VddIleackage  (3) 
 
Equation (3) is divided into dynamic power (αCVddΔV fclk + αESfclk) and static power (VddIleakage) by the influence of activity 
factor α. The static power has two types, which are subthreshold and gate leakages. As a threshold voltage is lower and channel 
length is shorter, the subthreshold leakage tends to increase. Also, thinner gate oxide increases the gate leakage [26]. McPAT 
uses an XML interface with various hardware components as inputs, but it cannot support DVFS (dynamic voltage and frequency 
scaling). Therefore, we modified gem5 to report when the frequency and voltage change by DVFS governors. Moreover, to 
automate execution of McPAT, we made an McFAT converter tool, which generates an XML input file from a system simulation 
configuration file and a statistics file as simulation results, and then reports the final energy consumption results after automatic 
execution of McFAT. Fig. 4 shows an example of the CPU power breakdown when BBench is executed with DVFS performance 
governor with a simulation configuration as in TABLE I. 

 

 
 

Fig. 4. The CPU power example of BBench execution with the DVFS performance governor. 
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2) DRAM: We use gem5’s DRAM model [30] based on Micron DDR3, as our DRAM power model. The gem5 DRAM model 
shows in average latency 1%, and in average power 3% inaccuracies [30], compared to DRAMSim2. The DRAM power model 
consists of precharge PPRE, write PWR, background precharge PPRE BACK, refresh PREF , activation 
PACT , read PRD, and background activation PACT BACK powers, as shown in Equation (4): 
 
PLPDDR3 = PPRE + PWR + PPRE BACK + PREF + PACT + PRD + PACT BACK (4) 
 
Fig. 5 shows an example of DRAM power breakdown when a web browser loads BBench benchmarks in the simulation with a 
configuration as in TABLE I. 

 
 

Fig. 5. The DRAM power example of BBench execution with the DVFS performance governor. The total DRAM average power is 149.4mW. 
 

VII. POWER MODEL EVALUATION 
To evaluate our power models, we compared the average power of the real measurements on Nexus 5 and a mobile full-system 
simulator with configuration as in TABLE I. 
1) The Comparison for Overall Power Model: For the validation of the overall mobile system, we compared the energy 
consumption of various types of applications, which are a web browser, a slideshow, a utility, and a game, as shown in Fig. 6. For 
web browsing, we executed the BBench benchmarks and conducted that the web browser loads only BBC website, which takes 
about 2 seconds, for a peak power validation. In a slideshow, a QuickPic application loads five images and shows for 10 seconds. 
For utility and game applications, we launched the calculator and TalkingTom applications and waited for 10 seconds. As a result, 
error rates with the ondemand governor range from 1.5% to 20.6%, and are 11.3% on average. With the performance governor, 
the error rates range from 4.6% to 20.7%. We achieved the total average error rate of 12.8%. 
 

 
 

Fig. 6. The average power comparison of mobile applications on a mobile full-system simulator and Nexus 5. 
 
 

 
 

Fig. 7. The average power comparison of SPEC CPU2006 benchmarks on a mobile full-system simulator and Nexus 5 
 
 2) SPEC CPU2006 Comparison for CPU, Caches, and DRAM Power Models: For more accurate validation of CPU/caches and 
DRAM, which are the important components in the aspect of applications, we executed SPEC CPU2006 benchmarks on Nexus 5 
with turning off a screen and all network interfaces such as cellular, WiFi, and Bluetooth. 
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Fig. 7 compares the average power of each benchmark. We can see that the bzip2, mcf, and sjeng benchmarks, which have many 
memory operations, consume more power than other benchmarks. The error rate of the simulated power consumption is 3.5% on 
average compared to the measurements on Nexus 5. CPU/caches and DRAM power models are more accurate. Thereby, the 
absence of GPU and other components in a mobile system incurs some inaccuracy of overall power models, but the difference of 
total average power compared to Nexus 5 is small. 

 
VIII. CONCLUSION 
Because of the limited battery capacity of mobile systems, the analysis of performance and energy consumption is very important 
in mobile systems. Full-system simulation with OS enables system designers and analysts to explore and optimize many kinds of 
hard wares and future mobile systems. To apply this full-system simulation to mobile systems based on wireless communication, 
various networking environments should be reflected in the simulator, because network quality and conditions affect performance 
and energy consumption. Although gem5 provides the full-system simulation, it does not provide a method to configure various 
network conditions, and to analyze overall energy consumption. To address these limitations, this paper presents a mobile full-
system simulation framework called MofySim, which provides the configuration of network conditions and power models for 
CPU/caches, DRAM, network interfaces, and display. To evaluate the performance of our simulator and power models, we 
compared the execution times and the average power consumption of mobile applications, BBench, and SPEC CPU2006 
benchmarks on our simulation with Nexus 5. We found that the cache hit latency and replacement policies are the sources of 
errors. The results show that the error rate of the power models is 12.8%, and the inaccuracy of the performance is 4.4% for SPEC 
CPU2006 and 26.8% for web page loading. Finally, we demonstrated convincingly that mobile systems depending on various 
network types and network errors such as packet losses have different characteristics. We also found energy inefficiency and 
unnecessary tasks such as the progress bar and intermediate rendering images, on network delays due to packet losses by 
analyzing the energy consumption of each application and the behaviours of CPU frequency migrations by the DVFS on demand 
governor. 
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