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I. INTRODUCTION 

A time series is eventually a collection of periodic recording of data. The data series based on 
time can be a collection from various sources with symmetric or dissymmetric nature 
depending on the nature of the data [1]. For example in case of random data sources, the 
weightage average of the data cannot produce any significant point to make any prediction, 
thus making it more difficult to use it for any statistical analysis [2] [16]. In order to get rid of 
the problem, the use of moving average and considering the moving average as new time 
series data for predictive analysis is the most popular way [3]. Nevertheless, the moving 
average or MA method is prone to error for multiple reasons. In this work, the problems of 
the MA methods are been highlighted and suitable solutions are also been recommended.   
 With the focus of time series data [4], this work defines the basic nomenclature of the time 
series. The use of time series for making long term decision and also the use in making just in 
time decisions makes it highly popular. The long term analysis of the time series can range 
from 5 years to 20 years for any given organization giving the opportunity for the other 
department of the organization to make plans for financials and human capital related 
decisions [5]. In the other hand, Just in time decisions are ranging from 1 week to 1 month 
time to enable less mission critical decisions for the organization [6]. The time series can 
show high rate of unpunctuality for a longer duration. Hence it is to be understood that, the 
errors or the noises will affect the long term analysis rather than the Just in time analysis. 
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Abstract— With the growing demand of the long term and short term planning based on predictions of time series data, 
this is the demand of the modern research to provide significant and promising methods for time series data analysis. 
Nevertheless the time series are prone to fluctuations and thus makes it difficult to analysis and perform any kind of 
predictive operations for making decisions. Time series clustering is an important solution to various problems in 
numerous fields of research, including business, medical science, and finance. However, conventional clustering 
algorithms are not practical for time series data because they are essentially designed for static data. This impracticality 
results in poor clustering accuracy in several systems. Thus smoothing of the time series is the most significant part of 
the research. Hence this work analyses the performance of various types of smoothing methods like moving average, 
weighted moving average and identifies the pitfalls of these methods. The final outcome of this work is proposing and 
evaluating the performance of a predictive weighted moving average method for smoothing the data. The novelty of the 
work includes reduction of the difference between the actual data points from the time series and calculated average time 
series. This contribution will help this work to contribute in an algorithm for calculating the piecewise aggregate 
approximation of a time series and also proposing a clustering algorithm in future.  
 
Keywords— Time Series, Pitfalls, Secular Trend, Cyclic variation, Seasonal variations, Moving Average, Weighted 
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More and more organizations are tend to plan for long term strategies and depend on the time 
series, thus making the time series noise free is the major demand of any research.  
Conversely, the facet understanding of the time series is must for any type of operations on 
time series and a very less number of literatures address that issue. Consequently, in order to 
proceed further, in this domain of research, this work produces a major understanding of the 
time series and its basic properties.     

II. TIME SERIES COMPONENTS  

Depending on the nature of the variation in the data, the time series are categorised in four 
different categories. In this section, the components of the time series are been examined.  
A. Secular Trend 

Secular Trends are the time series which demonstrates steady upwards or steady downwards 
or steady over the time [7] [8] [9].  
A secular trend can be represented by the following formula: 
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Here the Eq. 1 represents a steady upwards trend, Eq. 2 represents a steady downwards trend 
and Eq. 3 represents the steady trend.  
The secular trend can be understood with the example [Table – 1].  
TABLE I: ANNUAL PRICES OF AN APPLIANCE WITH INDEX NUMBERS FOR PRODUCT X, Y AND Z 

Year Product X Product Y Product Z 
2000 $100 $101.7 $101 
2001 $100.2 $101.5 $101 
2002 $100.3 $101.4 $101 
2003 $100.5 $101.2 $101.1 
2004 $100.7 $100.9 $101.1 
2005 $100.9 $100.7 $101 
2006 $101.2 $100.5 $101 
2007 $101.4 $100.3 $101.1 
2008 $101.5 $100.2 $101.1 
2009 $101.7 $100 $101 
 
The secular trend also can be understood graphically. 
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Fig. 1  Product Variance in Secular Trend 

 
B. Cyclical Variation  
The Cyclical Variations are the time series which demonstrates the prosperity, depression, 
recovery, recession and secular trends [10] [11].  
A cyclical variation can be represented by the following formula: 
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The cyclical variation can be understood with the example [Table – 2].  
 
 
TABLE II: ANNUAL PRICES OF AN APPLIANCE WITH INDEX NUMBERS FOR ORGANIZATION ABC CORP.  

Year Annual Turn Over for ABC Corp. 
2000 $1584 
2001 $1272 
2002 $1951 
2003 $1391 
2004 $1702 
2005 $1391 
2006 $1539 
2007 $1647 
2008 $1182 
2009 $1539 
 
The cyclical variation also can be understood graphically. 
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Fig. 2  Organization Annual Turn Over in Cyclical Variation 

 
The majority of the time series are identified to be cyclical variation, where the average is to 
be calculated. Due to the noisy nature of the data, it is difficult to calculate the moving 
average and the weightage average known not be to highly dependable for making 
predictions. In the next section of this work, the problems with moving average is been 
highlighted.     
C. Seasonal Variation  
The Seasonal Variations are the time series which demonstrates the prosperity, depression, 
recovery, recession and secular trends in a discrete time series [13] [14]. The discreteness of 
the time series makes it more difficult to use it for long term predictions. However, many 
time series are captured from the seasonal business data or seasonal healthcare data tend to 
show the nature of a seasonal variation.  
 A seasonal variation can be represented by the following formula 
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Here it is clear to understand the discontinuity of the time series.  
 The seasonal variation can be understood with the example [Table – 3].  
TABLE III: ANNUAL PRICES OF AN APPLIANCE WITH INDEX NUMBERS FOR FOUR QUARTER  

Year Quarter – 1  Quarter – 2 Quarter – 3  Quarter – 4  
2000 $100 $101.7 $101 $101 
2001 $100.2 $101.5 $101 $101 
2002 $100.3 $101.4 $101.1 $101 
2003 $100.5 $101.2 $101.1 $101.1 
2004 $100.7 $100.9 $101 $101.1 

 

III. PITFALLS OF MOVING AVERAGE 

The major reasons for popularity of the moving average method are not only for smoothing 
the series rather to calculate the long term fluctuation of the data. In order to apply the 
moving average method, the time series must have a rhythmic pattern and should not contain 
a very high fluctuation over a long time. The result of moving average can be best utilized 
and the fluctuations can mostly be removed if the time series is having regular intervals.  
 
Nevertheless, the moving average of the time series is not prone to errors. This work 
highlights [15] some of the errors in moving average method:  
 
 The moving average method takes the influences from the past trends, however the 
method fails to accommodate the influences from other factors like change in demand in case 
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of production industry or change in temperature in case of bacterial growth or change in 
medical improvements in case of health care time series.  
 
 The method of calculating the moving average fails to understand the influence of 
external and random events, due to which a certain point of data varied. This might influence 
the prediction.  
 
 The time series can consider a long term or a short term series over time. The short 
term time series can demonstrate a high fluctuation rate and the long term time series 
demonstrates low fluctuation rates. Thus choosing the period is the key to correct prediction 
in case of moving average method.  
 
 The moving average method includes few sub methods like simple moving average, 
exponential moving average. Thus choosing the most suitable method is very crucial for the 
chosen data. 
 
 The trend analysis for any time series is said to be having no previous records. Thus 
the technically of the moving average method is arguable.  
 
 The moving average method is fairly good for smoothing the time series; nevertheless 
the use of this method for prediction is uncertain.       
 
 The moving average method always demands a supporting method for correction to 
make it useable for prediction without giving much scope for argue.  
 
Henceforth it is to be realized that, the moving average method can be used effectively to 
smooth the time series and the method is to be accompanied by some special influential 
method in order to increase the effectiveness.  
 
Thus in the next section of this work, focuses on predictive weightage average method and 
demonstrates the improvement over the weighted average and moving average methods.   

IV. PROPOSED PREDICTIVE WEIGHTED  MOVING AVERAGE  METHOD  

Considering the need for smoothing the time series for better predictive analysis, the recent 
demand of improved moving average method cannot be ignored. Thus in this part of the work, 
the improved predictive moving average method is been proposed and evaluated.  
 
Firstly, we analyse the moving average method and weighted moving average method using 
the following lemmas and theorems.  
 
Lemma 1: The moving average of any given time series reduces the fluctuation of the time 
series thus creates a new time series.  
Where,  
  1 2 1, , ,.......... , ,.......i i i i k i k nn n n n n n       (Eq. 6) 
Denotes the time series, where the indexes denote the items in the series in regular intervals.  
  1 1, ,.......... , ,.......j j j k j k n jn n n n n       (Eq. 7) 
 Denotes the moving average series, where the indexes denote the interval of the weighted 
average for the series.  
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Proof: The intervals of the moving average series are higher than the intervals of the actual 
time series. Thus the relation between the two intervals can be formulated as:  
 i << j   (Eq. 8) 
Henceforth the relation between two successive elements in the time series and weighted 
average series can be compared as: 
 1 1i i j jn n n n      (Eq. 9) 
Thus the fluctuations can be reduced further for a long term time series.  
 
Lemma 2:  The weighted average compared to the moving average reduces the data point 
values, thus provides a verification references to the moving average series.  
Where,  
  1 2 1, , ,.......... , ,.......i i i i k i k nn n n n n n      (Eq. 10) 
Denotes the time series, where the indexes denote the items in the series in regular intervals.  
  1 2 1, , ,.......... , ,.......i i i i k i k nw w w w w w      (Eq. 11) 

Denotes, the time series weights for each data points 

   1 1, ,.......... , ,.......j j j k j k n jn n n n n       (Eq. 12) 

Denotes the weighted moving average series, where the indexes denote the interval of the 
weighted average for the series. 
 
Proof: The weighted moving average is calculated with the bound of the weight, which 
increase the value of the data points. Thus,  
 i i in n w    (Eq. 13) 
 
However, the weighted moving average series data points are calculated also with the bounds 
of weights as divided. Thus,  
  
 /i j in n w   (Eq. 14) 
Henceforth with the influence of Lemma 1, it is proven that the weighted moving average 
method produces a modified series with much lesser data point values.  
 
There further, this work proposes the novel predictive weighted moving average method. The 
proposed method calculates the moving average of the time series and produces the new 
series.  
However, due to the limitations of the moving average method, the data points may tend to 
avoid the external events influence and making it arguable to be used for predictive analysis 
for short terms. Hence, this work deploys a novel multi-layer perceptron model and uses the 
weighted moving averages as weight of the MLP. The details of the proposed algorithm are 
demonstrated here:  
 
Step-1. Accumulate the time series data points into a natural collection.  
 
Step-2. Calculate the moving average of the time series and accumulate the new series into 
another natural collection independent of the nature of the of the data point values.  
 
Step-3. Calculate the moving weighted average of the original time series. The new series will 
be considered as weights for the MLP.  
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Step-4. Lastly, calculate the final time series using MLP where the input is the moving 
average time series and the weights are the weighted moving average values.   
 
  
 
Here the algorithm is realized mathematically,  
 
The time series is represented as:  
  1 1, ,.......... , ,.......i i i k i k nN n n n n n     (Eq. 15) 
The moving average is represented as:  
   1, ,.......... ,.......j j j k n jK n n n n     (Eq. 16) 
The weighted average is represented as:  
  1 1, ,.......... , ,.......j j j k j k n jW n n n n n      (Eq. 17) 
Thus, the proposed novel predictive weighted moving average is calculated as:  
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The final data points are proven to more accurate for the time series and proven to more 
prediction ready proven using Lemma – 1 and Lemma – 2.     
The next section demonstrates the configuration details of the neural network schema or the 
MLP configurations.   
 

V. PROPOSED NEURAL NETWORK SCHEMA   
The proposed multilayer perceptron model is made with the sole purpose to reduce the fluctuations and 
differences between the actual time series and after the smoothing. Henceforth here the work proposes the 
multilayer perceptron model [Figure – 3].  
 
 

 
Fig. 3  Multi-Layer Proposed Multilayer Perceptron Model 
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The proposed MLP is arranged as the input layer is responsible for processing the inputs 
during the training; the hidden layers are available for considering the weight. The detail of 
the MLP is discussed in this section of the work [Table – 4]. 
 

TABLE IV: MLP CHARACTERESTICS 
Attribute of MLP Detail Description  
Back Propagation Learning Rule, 
variable number of hidden layers 1 to 5 Layers  
Random Number Seed 0 
Learning Rate 0.1 
Learning Rate Function Static learning rate 
Constant Bias Input 1.0 
Training Iterations 500 

Training Mode 

Batch Training -  
weight changes are applied 
at the end of  
each epoch 

Transfer Function 

Sigmoid (Logistic), �S-
shape function between +1 
and 0 

Momentum 0.2 
Weight Decay 0.1 
Bias Input Value 1.0 
Inputs 36 
Output Layer 5 
Total Neurons 5 
Total Nodes 226 

 

VI. RESULTS AND DISCUSSION   
Firstly, the comparative study of the moving average, weighted average and predictive 
weighted moving average is been carried out with a smaller data point values and with 
smaller term [Table – 5].  
 
      TABLE V: Evaluation - 1     
Data Point 
Values  

Weights Average Moving 
Average 

Weighted Moving 
Average 

Novel 
Method 

1.0 1 3.7 1.0 1 1 
4.5 2 3.7 2.8 1 2.75 
6.0 3 3.7 3.8 1.833333333 3.833333 
4.0 2 3.7 3.9 1.916666667 3.875 
3.0 1 3.7 3.7 1.9375 4.375 
4.0 2 3.7 3.8 2.055555556 4.25 
5.0 3 3.7 3.9 2.045454545 4 
4.0 2 3.7 3.9 1.964285714 4 
3.0 1 3.7 3.8 1.96875 4 
2.0 1 3.7 3.7 2.029411765 3.5 
 
The assignments of weights are as per the following rule:  
 Range 0.0 to 3.0 : Weight = 1 
 Range 3.1 to 4.0 : Weight = 2 
 Range 4.1 to 7.0 : Weight = 3 
 
The improvement can be visualized graphically [Figure – 4].
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Fig. 4  Evaluation – 1 Comparisons 

 
Secondly, the comparative study of the moving average, weighted average and predictive 
weighted moving average is been carried out with a higher data point values and with larger 
term [Table – 6]. The data set used in this evaluation is annual nonfatal disabling mine 
injuries 1930 – 1978 [15].  
 
      
 
 TABLE VI: Evaluation – 2     
Data Point 
Values  

Weights Average Moving 
Average 

Weighted 
Moving 
Average 

Novel Method 

14160 3 11584.5 14160.0 1 14160 
12163 2 11584.5 13161.5 4720 13161.5 
11902 1 11584.5 12741.7 5264.6 12741.66667 
11197 1 11584.5 12355.5 6370.8333 12355.5 
10944 1 11584.5 12073.2 7060.2857 11551.5 
11133 1 11584.5 11916.5 7545.75 11294 
11070 1 11584.5 11795.6 7944.3333 11086 
11183 1 11584.5 11719.0 8256.9 11082.5 
10446 1 11584.5 11577.6 8522.9090 10958 
10115 1 11584.5 11431.3 8683.1666 10703.5 
9639 1 11584.52 11268.4 8793.3076 10345.75 
9917 1 11584.52 11155.8 8853.7142 10029.25 
11552 1 11584.52 11186.2 8924.6 10305.75 
11916 1 11584.52 11238.4 9088.8125 10756 
12329 2 11584.52 11311.1 9255.1176 11428.5 
11220 1 11584.52 11305.4 8929.7894 11754.25 
8545 1 11584.52 11143.0 9044.3 11002.5 
11107 1 11584.52 11141.0 9020.5238 10800.25 
14389 3 11584.52 11311.9 9115.3636 11315.25 
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14794 3 11584.52 11486.1 8597.08 12208.75 
13554 3 11584.52 11584.5 8204.3214 13461 
 
The assignments of weights are as per the following rule:  
 Range 00000.0 to 12000.0 : Weight = 1 
 Range 12000.1 to 13000.0 : Weight = 2 
 Range 13000.1 to 16000.0 : Weight = 3 
 
The improvement can be visualized graphically [Figure – 5]. 
 

 
Fig. 5  Evaluation – 2 Comparisons   

 
VII. CONCLUSIONS 
This work analyses the time series and the properties of any time series which might 
influence the applied mathematical convolutions. With the carried out study in the space of 
time series, the nature of time series is been understood and it is also understood that due to 
the fluctuation nature of the series, it is difficult to analyze the series. Thus this work 
proposes the methods for smoothing the fluctuations. However with the light of the work it is 
understood that the standard methods like moving average and weighted average methods are 
prone to errors for various reasons. Thus this work proposes a novel MLP based method 
called predictive weighted moving average method for smoothing the data points or the 
fluctuations. The proposed method in this work demonstrates significant improvement in 
smoothing fluctuations and also considers the closeness of the data points with the original 
data points. Henceforth, this work contributes to the time series analysis in a significant way 
and makes the time series highly acceptable for further analysis in the space of predictive 
analysis for long and short term planning.     
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