

A UNIQUE CODE SMELL DETECTION AND
REFACTORING SCHEME FOR EVALUATING
SOFTWARE MAINTAINABILITY
Rohit Kumar1 and Jaspreet Singh2

I. INTRODUCTION
Today’s software has become part of everyone’s life. The rule of software is its capability to
make our lives easier, get better productivity and efficiency. However, such efficiencies come at
the cost of all-encompassing observation [1].A characteristic of software that is such a
achievement that humanity should never forgets.Smells are certain structure in the code that sign
violation of major design principles and adversely impact of design quality. Code Smell (CS) are
normally not errors, neither are they technically wrong nor do they check the program. Instead,
CSs are weakness of design that may be slowing down along with increasing the high risk of
errors or bugs in the future. CSs have been defined as sign of poor plan and execution choices. In
some cases, such sign may be invented by activities performed by developers while in a speed
such as, implement urgent patch or simply making suboptimal choices. While most CSs are
presented, adding new characteristics better than the existing ones, refactoring events can also
add bad smells. New features are not responsible for presenting bad smells, while engineers with
high workloads are more responsible. Hence, by releasing pressure from engineers may be more

1 Chandigarh Engineering College Mohali, (Punjab), India
2 Chandigarh Engineering College Mohali, (Punjab), India

International Journal of Latest Trends in Engineering and Technology
Vol.(7)Issue(4), pp.421-436

DOI: http://dx.doi.org/10.21172/1.74.057
e-ISSN:2278-621X

Abstract – Code smell (CS) is a sign that tells something has gone incorrect, somewhere in the code. Such
problems are neither bugs nor they are technically wrong. Moreover, they do not prevent the program from its
functioning. CS indicates the flaws in the design that may be a reason to slow down the development in the near
future. From software engineer’s perspective, detecting CS remains major concern so to enhance
maintainability. However, it is a time consuming task. Refactoring method can be implied to remove CSs.
Refactoring is a technique used to reconstruct the body of current code by changing its inner structure, without
changing its outer behavior. Current CS detection tools are not equipped with functionality to assess the parts of
code where improvements are required. Hence, they are unable to re-factor the actual code. Further, no
functionality is available to permanently remove the CSs from the actual code thereby increasing the Risk factor.
In this paper, a unique technique is designed to identify CSs. For this purpose, various object-oriented
programming (OOPs)-based-metrics with their maintainability index are used. Further, code refactoring and
optimization technique is applied to obtain low maintainability Index. Finally, the proposed scheme is evaluated
to achieve satisfactory results.

Keywords – Code smell, object-oriented programming, optimization, refactoring, software maintenance, oops
Metrics.

A Unique Code Smell Detection and Refactoring Scheme for Evaluating Software Maintainability 422

beneficial to present smell objects. Moreover, it represents need for large code inspection efforts
in such busy work situations.
Refactoringmeans easy and clears the structure of previous code, without changing its behavior.
Agile teams are extending and maintaining their code a lot by making repetitions [2]. But, they
do not use continuous refactoring as it is no easy. This is because un-factored code tends to rot.
Numerous forms are generated by un-factored rot which depicts unhealthy dependencies per
method or class, duplicate code, and some other varieties of mix-up and disorder. Every time we
change the code without refactoring it, rot degrades and spreads. Code rot frustrates us along
with costing us time and shortens the lifespan of useful system. Refactoring process consists of
various events as given below.

 Recognize whenever the software that should be refectories.
 Establish which refactoring should be useful.
 Agreement that the functional refactoring conserves behavior and apply the refactoring.
 Evaluate consequence on quality of the software (e.g., maintainability) & procedure (e.g.,
efficiency).
 Continue reliability between the refectories programming code and other software object
(i.e. documents, propose papers, experiments and so on).

Detected code smells will differ depending on the preferred likelihood threshold [3]. Growing
the probability too much will reason more false negative, while falling it in excess will grounds
more false positives. It will be up to the developer to fine adjust the threshold to get the sufficient
level of advice with respect to the occurrence of CSs. It will also be up to the developer to
choose the sufficiency to relate a given refactoring to eliminate a detected CS. The block
diagram of the detection model for CS is shown in Fig. 1.The model clearly depicts all the steps
starting from dividing the source code into classes and trees moving on to calculation OOPs
metrics. The model then compares facts and rules with code and finally concludes with results.

Fig. 1: Overview of detection model

Source
Code

Abstract
Syntax
Tree

Calculating
Object oriented

Metrics

Divide
into

classes &
methods

Fact
and
rule

s

Comp
arison
with
rules

Res
ults

 Rohit Kumar and Jaspreet Singh 423

II. BACKGROUND
 This section gives procedural background tosoftware maintenance process; CS and
software metrics, threshold for software metrics and risk assessment.

A. Maintenance of Software
The alteration in software created after delivery so as to correct mistakes, to modify presentation
or other aspects is known as software maintenance.The detailed study on how [4] a plan
functions before it can modification it is the preliminary task. It is frequentlyrelated with difficult
and hard to understand systems. Maintenance process is affected by programmer expertise,
occurrence, system documentation and the nature of the system itself. The cost of software
maintenance accounts for 60% to 80% of the estimation software system charge and
enhancements accounts for 70% to 85% of the maintenance effort. Various type of software
maintenance are curative maintenance production with bugs corrections, adaptive maintenance
concerning system varies as needs and environment change and perfective maintenance trying to
recover the quality of system. Maintenance process is affected by programming skills, system
documentation, experience and the behavior of the system itself.

B. Code Smell (CS)
CSs are normally not errors, they are not exactly wrong and don’t presently avoid the program
from functioning. This could be considered as software softness is structure that may be growing
the risk of errors or faults in future. We are concerned with the succeeding code smells.

 Long Method: It is defined as, a function that has developed to large. The long method,
not easy it becomes to read, to alternate, to maintain etc.
 Long Parameter List: Whenever developer produces a techniques with parameters, he
should know that the larger the parameter list, the more difficult [5] it becomes to maintain this
technique. The CS is well-defined as various parameters passed into a technique, this is different
object oriented programming , and long parameter list method can shifted by passing an object in
this place of the parameters because long parameter is not easier to read, change.
 Empty Catch: If programmer users the try and catch blocks sometimes they left the catch
part empty with no code classified it. Either code can grip the exception, then the catch clause
should not been empty, or the code can’t handle the exception, then there should not be try/catch
block at all.

C. Software Metrics
Software Metrics are a computable extent of software. In this paper, they are center of attention
only on basis code’s metrics as mentioned to in the subsequent Fig. 2.

Fig. 2: Object-oriented software metric

Notation Title Level

NOM Number of methods Class

PARNumber of parameters Methods

LCOM Lack cohesion methods class

MLOC method of LOCMethods

A Unique Code Smell Detection and Refactoring Scheme for Evaluating Software Maintainability 424

D. Thresholds for Software Metrics
Detection rules for CSs are frequently defined in the terms of metric categories or classifications.
An illustration can be: “distinguish classes that have lower dependability” or “classify methods
that have a high difficulty”. We want to obtain thresholds in a method that can be semantically
mapped to these easy necessities, to find out what ‘LOW’ unity or ‘HIGH’ difficulty means in
terms of the metrics, the unity and difficulty of the software is measured [6].In normal,
thresholds may discriminate values. In case threshold gives higher bound, the values that are
greater than a threshold value are measured to be difficulties. Further, the values that are lower
are measured to be suitable. Thus, by incorporating threshold a simple analysis of considered
values is probable. For the understanding of software metrics thresholds are essential.For
example, suppose a metric mat that considers the size of an individual xx. Then a threshold thcan
be used to determine if xx is too huge:.

 is too huge …….. (1)

Although the overhead isillustrated about the threshold used as a higher bound, it might as well
know a low bound. For clarity, let thresholds are always higher bound. Though, there is no limit
as low bound, it can be transformed into higher bounds. Suppose mat is a metric with the
threshold ththat offers a low bound, i.e., individuals xx are measured to be difficulties if
mat(xx)<th, , which is equal to 1/mat(xx) >1/thif mat(xx) and thare non-negative, metrics and
thresholds normally are. By giving a novel metric mat’(xx) = 1/mat(xx) and a novel threshold th’
= 1/tha novel metric with the reverse order is defined and with th’ a threshold is gained that gives
a higher bound. By reversing the metric, its scale is changed. To transform a low bound into
higher bound while keeping its scale to minus, the metric for maximum value is used

II.RELATED WORK
In [7], Abilio, et al. studied the similar issues in numerous languages. These methods can be used
to build software product lines. However, characteristic-oriented programming is a major method
to offer with the modularization on characteristics in software product line. In another work,
Wang, et al. presented a platform specific code smell aware system i.e. based on an abstract
syntax tree and XML in [8]. Programming patters of PSCSs are defined in a formal way using
abstract syntax tree sequence represented in XML. In [9], Francesa et al. proposed a data driven
technique to derive threshold values for metric code, which can be used for developing detection
rules for code smells. In a similar work, Arcelli et al. proposed a technique that is apparent,
repeatable and allows the extraction of thresholds that respect the statistical properties of the
metric.

In [10], Aiko et al. summarized the most relevant findings and discussed a series of lessons
studied from calculating this study, and converses avenues for novel research in the field of CSs
in [10]. Further in [11], Kim, et al. considered scheme in the reduction pattern table and
modification in real, applyingan tree structure. Tree Pattern matching reducer was used to
calculate patter more efficiently while its round in top to down method. However, the matching
technique needs the investigating time to search pattern less than the string pattern matching
techniques of acknowledgement.
Above mentioned literature strongly acknowledges the need of a unique technique for CS which
could solve all the raised issues and problem. Further, such technique should provide a simplistic
way for easing the software maintenance process. Hence, after analyzing the aforementioned

 Rohit Kumar and Jaspreet Singh 425

literature, a unique a unique technique is designed to identify CSs. For this purpose, various
object-oriented programming (OOPs)-based-metrics with their maintainability index are used.
Further, code refactoring and optimization technique is applied to obtain low maintainability
Index.

III.SOFTWARE ARCHITECTURE RISK BASED DETECTION TOOL
In this division, we converse the CSs detection tool Visual Studio which is based on the risk
based concept. The detection methodology depends on evaluating the code line by keeping
words. In case the code is method statement, the program will investigate for Long Method and
Long parameter List, then the program runs to check each line in the particular code to find any
message chain or Empty Chain [12]. Fig. 3 shows the user interface of tool which subsequently
gives concise description. In the upper grey area, there are 2 options, the first is used to project
and the other is used to show CSs. Now click to project option, select upload your project file.
Upload the three types of project C++, Java and C#.net. To select the file name in D-drive name
is ECC.sln. The loading all files in C++, java and C#.net is done for training section. The Table I
shows various types of CS detection tools and their explanation.

Fig. 1: Upload the Project File

IV. COMPARISON TOOLS
In this section, we evaluate some CSs tools each of them have some dissimilar features.

A. Clock Sharp

Clock Sharp is a code organizer tool for C# Programming language integrated with visual Studio
2008 and 2010.It checks code using more than 100 programming rules and can be executed as
command line tool.

B. Find Bugs

Find Bugs is an open source plan works on java byte code appear for bugs in java code using
[14] still study to identify four likely types of errors scariest and disturbing, of concern.

C. PMD (Programming Mistake Detector)

A Unique Code Smell Detection and Refactoring Scheme for Evaluating Software Maintainability 426

Source code analyzer is tool that identifies troubles in various types class: bugs such as Copied
or pasted code, Duplicate code, empty try, empty catch, empty finally, empty switch, dead code,
parameters and private methods, string usage, string buffer usage,inefficient overcomplicated
terminology, Sub optimal code, vacant local variables, Dead code, avoidable statements, for and
while statements [13].

Table I: Various CS detection tools

Code
Smell Definition Variable used Results

Long
Method

An extended and composite
method is categorized into
dummy and well-defined
methods with refactoring
methods like extract techniques.
As a rule, the extracted novel
techniques are called within the
existing one in the original
position; thus, the abstraction
does not contract the parameter
list.

Cyclomatic
complexity,
LOC, Number
Of Methods

LOC >50, no variable used,
CC > 50. Source code
divided into classes &
methods is uploaded
according to syntax tree.
OOPs metrics are calculated
and compared with rules &
threshold value. Result
occurred in rule wise. No. of
method used = 99 &No. of
long method = 21.

Long
Parameter
List

CS is defined as many
constraints passed into a method,
which is different in object-
oriented, and larger parameter
list method.Can restore
momentary by an object as
substitute of parameters as long
parameter list technique is
difficult to read & modify.

Number of
Parameter, ∑n
parameter of a
method,
Average
Parameter,

NOP > 7, ∑n parameter of a
method = 148 , M in C = 88 ,
average parameter = 3 and
no. of parameter > average
parameter. Detection method
is same applying only object
oriented metrics are
different.

Large
Classes

Large classes to advance their
intelligibility and preserve, large
classes are categorized into
smaller ones, each for a single
dependability.

Lines of Codes,
Instance
Variable, Depth
of Inheritance,
Coupling

LOC > 300, long method >
5, used instance of variable
id >15 &methods > 10.
Depth of inheritance means”
greater extent from the knot
to root of diagram”, DIP> 3
and coupling >10.

Dead
Code

Dead code means, remove code
that isn't organism used. That's
why we have source control
systems.

Unused Block
of data

Unused Block of data is
totally used is 24.

 Rohit Kumar and Jaspreet Singh 427

Lazy
Class

Lazy classes should
predominantly request
information from exacting
source. Each additional class
enhances the complexity of a
scheme.

Number of
techniques or
weight, LOC

Several of method ==0,
LOC<=300 and weighted
method count or no. of
method <=2.

Lazy
Catch
Block

Discover the empty catch block,
comparing number to threshold

Number of
Unused catch
block

Total number of unused
catch block = 5.

Duplicate
Code

Duplicate Code exists if more
brief code exists that explains the
same functionality like blocked
repeated

Number of
Duplicate code
block

Total number of Duplicate
code block is 19.

Table II shows various types of comparison tools and Table II depicts comparison of detection
methods used.

Table II: Various comparison tools

Comparis
on
Criteria

Developed
Software Clock Sharp Find Bugs Programming Mistake

Detector

Tool
Descriptio
n

Standalone Plug- in Tool Stand alone Plug-in Tool

Threshold
Fixed
Threshold
value

 No threshold
value

No threshold
value No threshold Value

Smell
Filtration

Can view all
error module
wise

View all the
errors at the
output

View all the
errors at the
output

View all the errors at the
output

Can work
on project
/ language

C++,java and
.net C# Java Java

User
Interface User friendly Not user

friendly User friendly User friendly

Results Represented
in graphics

Is too long to
read

Can be filter by
classes, packages Not true error

Time
consumpti
on

Less - - -

Table III: Comparison of detection methods used

A Unique Code Smell Detection and Refactoring Scheme for Evaluating Software Maintainability 428

Code Smell Methods
ECC
System
(Yes/No)

Movie Rental
Program
(Yes/No)

Electricity
calculating
program
(Yes/No)

Another
Cryptograp
hy System
(Yes/No)

Long Method Yes Yes Yes Yes
Long Parameter List Yes Yes No Yes
Large Classes Yes No NO No
Dead Code Yes No No No
Lazy Class Yes No Yes No
Lazy Catch Blocks Yes No No No
Duplicate code Yes No No No
Switch Statement Yes Yes Yes No
Temporary Field Yes No No No
Comment Lines Yes No No No

V.SIMULATION MODEL
In our research work, source code is written in C++, java and C# (object oriented language). At
once, only one language is detected for code like we can select C# code. All methods are applied
and tested in c# language code or object oriented programming language.In Fig.4, the case study
program is used for ECC system using c# / object-oriented Program. An error in all classes is
detected using CS detector for code samples as Admin.cs and Adminlog.cs and etc. Visual studio
is the tool used for evaluating the code. Bad smells would be detected using plug-in withvisual
studio. Software metrics plug-in would be applied on source code to calculate the metrics values
for analysis and measure the quality of source code. Refactoring techniques are applied to
remove the detected bad smellsusing “visual tool”. Then again metrics plug-in is applied to re-
calculate the metrics values. Finally, the simplify/test cycle is repeated until the smell is gone
“without varying its bordering performance”.

Various metrics for refactoring:

• Total lines of code

• Several of packages

• Method lines of code

• Numerous of classes

• Several of attributes

• Cyclomatic complexity

 Rohit Kumar and Jaspreet Singh 429

• Number of children

• Coupling

• Cohesion

• Complexity of inheritance tree

Fig. 4: Flow chart of proposed work

A. Software Specification

Source code of a project in any language (C#, C++, java) is required to calculate the quality
using software metrics. The tool used to run the source code is required for e.g,visual studio and
its plug-in. DEODORANT named plug-in is used to detect the bad smells in code. Metrics 1.3.6
is used to calculate the metrics values.

A Unique Code Smell Detection and Refactoring Scheme for Evaluating Software Maintainability 430

B. Hardware Specification

To determine the size, portable Coordinate Measurement Machine is used to reach around the
surface geometry of your physical model, or part. Size of digitizers may have restrictions,
although this can frequently be dealt with by using the leap frog article which can be purchased
as part of the refactoring eclipse plug-in. Finally, conclude what accuracy tolerance is required
when refactoring of the physical model, model or part. It is always greatest to use a computer
with a high end illustrations card, with high end memory resources.

 C. Significant Research work

The details are discussed as below.

 Maintain Ability:It is simple to attach errors since the initial code is simple to read and
easy to grip. This capacity is completed by dropping large uniform routines into a set of
separately concise, well-named, single resolve method. It powers by moving a method to a more
suitable class, or by removing ambiguous explanation.
 Extensibility:It is straightforward to range the capacity of the request if it uses
recognizable structure patterns, and it offer some where none before may have existed. Because
of frequent changes of the source code its arrangement can be easily customized. Therefore, it
becomes very hard to reorganize the code and make its design inclusive.Correction makes
software easier to understand.If it is not well considered, software is very hard to appreciate,
particularly in a few months’ time. Applying refactoring as untimely as possible during the
software life-cycle can recover the feature of intend and reduce the complexity and cost in
successive development phases.
 Documentation: Refactoring shows an important role. It is a great technique if
documentation to an older device cannot be studied. One may need to know and appreciate the
inner works of the device in order to develop maintenance instructions, create an improved
example or to replace incomplete or out-dated certification.
 Complexity:The complexity of the project is analysed and calculated so as to understand
the scalability of the project.
 Code smells (CSs): Various types of code smells are generated using the refactoring.
 K-mean Clustering:This is a method of quantized vector, initially from signal processing
i.e., famous for classified analysis in data mining. K-means clustering destination is used to
divide m explanations into k clusters in which each explanation belongs to cluster with the
neighbour mean, serving as rules of cluster. These consequences in a division of data space into
small cells.
 Optimization Techniques (GA): This is a technique used to resolve both reserved and
unreserved reduction difficulties based on nature’s initial process i.e. biological evolution. This
algorithm repeatedly modifies a random population of individual solution. At each step genetic
technique randomly selects individuals from recent population and uses them as parents to
produce children for the next generation.

VI.CASE STUDY
The case study is full for recognition of bad smells in the Elliptic Curve Cryptography system in
(.net, c++ and java) object oriented language. The many bad smells are distinguished in the ECC

 Rohit Kumar and Jaspreet Singh 431

system source code using graphical user interface application developed. The following metrics
in .net are implemented to find out the methods of bad smells in the source code. Case Study in
Various methods likes Long Methods, Long Parameter list, Large Classes, Dead Code Blocks,
Lazy Classes, Unused Catch Block, Duplicate code, Switch and Temporary Fields.
A. How to check long method?

There are numerous different CSs, but long method is one of the mainly general and simply
corrected method. A larger method is some technique that is so extended it is hard to appreciate
at a fleeting look. Diverse entity programmers will have dissimilar opinion about how long is
too extended, and here is a single rule that would relate in all cases. Though, in universal you
should prefer methods that are shorter to those that are longer, technique that do only one object
and methods whose lengths permit them to be view on a single screen in their total. Result
obtained by long methods in your project are actually attractive easy to do using visual studio
analysis tools. In visual studio 2010, while you have the project you desire to Longmethod.cs
open, click “TEST_CODE” then“estimateCode Metrics for[Longmethod.cs].”

B.How to check Dead Code Blocks and Why to remove dead code?
It can be inaccessible code, unnecessary code, or unused code. Using the code analysis
characteristic of visual studio we can find it. The following are possible reasons to remove dead
code:
 At times we misuse a lot of time thoughts why a breakpoint does not hit a method/class.
 To add to the code coverage result.
 Code maintainability.
 Recover performance.

Pseudo Code of Long Method

Initialize the variables LocI=0, CCI=0,
HALI=0,ci, datatype, x=0,count=0,s,semicolon
and loc=0;
for (ci=0;ci <methods.Items.Count;ci++)

try
string[] data type = new string[] { " string ", "
String ", " int ", " Int16 ", " Int32 ", " Int64 ", "
float ", " double ", " Double ", " Single ", " char
", " Char " };
for (int i = 0; i < array. Length; i++)
if statement (array[i] == ';') //to
check the end of the lines through semicolon
(LOC)

A Unique Code Smell Detection and Refactoring Scheme for Evaluating Software Maintainability 432

loc++;
 end
end
if (vari. Contains(',')) // to find the
colons
string[] variables = vari. Split(',');
for (int j = 0; j < variables. Length; j++)
 if (s.Contains(variables[j] + " =") ||
s.Contains(variables[j] + " <=") ||
s.Contains(variables[j] + " >=") ||
s.Contains(variables[j] + " ==") ||
s.Contains(variables[j] + " +="))

 end
 else

 if condition (loc>= 50)
 if condition (count == 0)
LOClongmethods [locI++] = methods.
Items[ci].ToString();
 count++;
 end
end
else
if (s.Contains(vari + " =") || s.Contains(vari + "
<=") || s.Contains(vari + " >=") ||
s.Contains(vari + " ==") || s.Contains(vari + "
+="))

end
 else
 if condition (count == 0)

LOClongmethods[locI++] = methods.
Items[ci].ToString();
 count++;

 end
end

 Rohit Kumar and Jaspreet Singh 433

To start adding rules to the Deadcode.cs rule set, you can investigate for a rule using either the
rule number or its name, as shown below. You can also simply increase the rule category and
select the rules that you are concerned in.All the dead code exposure rules are part of a particular
rule set that make it much easier to direct.
Fig. 5 shows that the larger method is any technique that is so larger which is complex to
understand at a glance.But long a method is one of the most widespread and give simply
corrected CSs. To detect the CS using long method is 2, number of long parameter list (LPL) =
2, no. of large classes =2, no. of dead code blocks =70, no. of lazy classes=3, unused catch
block=0, duplicate code=9 like code clone, switch =0 and last one of the least temporary field
=16.

Fig 5: Correction to Find Detect Methods (Before)

Fig. 6: Correction to Memory Used (Before)

Fig. 6 shows that, the memory used to find in two categories total memory and unused memory.
Total memory value used is =80619 and unused memory value used is = 11678.

A Unique Code Smell Detection and Refactoring Scheme for Evaluating Software Maintainability 434

Fig. 7: Correction to Find Detect Methods (After)

Fig. 7 shows that, to fresh up code smells, one must re-factor. Refactoring is the procedure of
humanizing the superiority of the program without altering its exterior behavior. In the case of
the long method smell, the majority widespread way to re-factor is to remove methods from the
long method. In universal, the remove method refactoring is one that can typically be done with
the support of built-in tools in visual studio. To detect the code smell no. of long method = 0, no.
of long parameter list =0, no. of large classes=1, no. of dead code blocks=0, no. of lazy classes =
1, unused catch blocks=0, duplicate code value is 0,switch value is 0 and temporary field value is
0.

Fig. 8: Correction to Memory Used (After)

Fig. 8 shows that in this way, the technique can be broken up in to a compilation of smaller,
more unified methods. Total Memory value used is 68941 and Unused Memory value used is 0.

VII. CONCLUSION AND FUTURE SCOPE
In this paper, we have proposed a unique CS detection scheme. The scheme is evaluated using
various parameters for a case study of ECC system. Various code smells were detected in the
ECC system source code using graphical user interface application developed. The calculated

 Rohit Kumar and Jaspreet Singh 435

object oriented metrics shows the value of each metric in their respective CSs detected on the
coding. The objective of this paper was not to evaluate the implements, but to explain our
knowledge in using them and difficulties related to its evaluation task. Linear regression analysis
was used in which all of the smells were examined in the similar mode.In this paper, a tool for
detecting CSsis proposed to deal with the threat concept. As a verification of concept, an
automatic risk based code smells detection tool was developed. The tool was used to recognize
problems in a C# case study. Various CSs have been detected in the case study. Total memory
used and unused memory (before and after refactoring) was also calculated. Moreover, risk
factor level has been qualitatively related (high, low, medium) with each CS based on the rate of
occurrence and rigorousness.
In future, we plan to expand our developed software to sense other CSs and test the tool using
larger case study. Further, developer based experiment to duplicate Mantyla’s developer study
and an investigation of the testing implication of smell suppression is also in scope of this
problem.

REFERENCES
[1] Hazelwood, Kim, and Michael D. Smith. "Generational cache management of code traces

in dynamic optimization systems." Proceedings of the 36th annual IEEE/ACM
International Symposium on Microarchitecture.IEEE Computer Society, 2003.

[2] van Emden, Eva, and Leon Moonen."Assuring software quality by code smell
detection." Reverse Engineering (WCRE), 2012 19th Working Conference on. IEEE, 2012.

[3] Van Emden, Eva, and Leon Moonen."Java quality assurance by detecting code
smells." Reverse Engineering, 2002.Proceedings.Ninth Working Conference on.IEEE,
2002.

[4] Palomba, Fabio. "Textual analysis for code smell detection." Proceedings of the 37th
International Conference on Software Engineering-Volume 2. IEEE Press, 2015.

[5] Nguyen, Hung Viet, et al. "Detection of embedded code smells in dynamic web
applications." Automated Software Engineering (ASE), 2012 Proceedings of the 27th
IEEE/ACM International Conference on.IEEE, 2012.

[6] Herbold, Steffen, Jens Grabowski, and Stephan Waack. "Calculation and optimization of
thresholds for sets of software metrics." Empirical Software Engineering 16.6 (2011): 812-
841.

[7] Abilio, Ramon, et al. "Detecting Code Smells in Software Product Lines--An Exploratory
Study." Information Technology-New Generations (ITNG), 2015 12th International
Conference on.IEEE, 2015.

[8] Wang, Chunyan, et al. "A platform-specific code smell alert system for high performance
computing applications." Parallel & Distributed Processing Symposium Workshops
(IPDPSW), 2014 IEEE International. IEEE, 2014.

A Unique Code Smell Detection and Refactoring Scheme for Evaluating Software Maintainability 436

[9] Fontana, Francesca Arcelli, et al. "Automatic metric thresholds derivation for code smell
detection." Proceedings of the Sixth International Workshop on Emerging Trends in
Software Metrics. IEEE Press, 2015.

[10] Yamashita, Aiko. "How good are code smells for evaluating software maintainability?
results from a comparative case study." 2013 IEEE International Conference on Software
Maintenance.IEEE, 2013.

[11] Kim, Jungsook, and Seman Oh. "EM-code optimization algorithm using tree pattern
matching." Information, Communications and Signal Processing, 1997.ICICS.,
Proceedings of 1997 International Conference on. IEEE, 1997.

[12] Ramos Conceicao, Carlos Fabio, Glauco de FigueiredoCarneiro, and Brito E.
Abreu."Streamlining Code Smells: Using Collective Intelligence and
Visualization." Quality of Information and Communications Technology (QUATIC), 2014
9th International Conference on the.IEEE, 2014.

[13] Kessentini, Wael, et al. "A cooperative parallel search-based software engineering
approach for code-smells detection." Software Engineering, IEEE Transactions on 40.9
(2014): 841-861.

[14] Ito, Yu, et al. "A Method for Detecting Bad Smells and ITS Application to Software
Engineering Education." Advanced Applied Informatics (IIAIAAI), 2014 IIAI 3rd
International Conference on. IEEE, 2014

