

COMPARATIVE ANALYSIS ON EFFICIENCY

OF SINGLE STRING PATTERN MATCHING

ALGORITHMS

Enola D’Souza
1
, B Shalini Pai

2
 and Ms. Suchetha Vijayakumar

3

I. INTRODUCTION

Pattern-matching is the act of checking sequence of tokens for the presence of some pattern. It is a process

which takes Pattern as inputof length ‘P’ and Text of length ‘T’, where ‘P’ is smaller than ‘T’.Pattern matching

techniques has two categories:

• Single pattern matching technique

• Multiple pattern matching technique

In single pattern matching it is required to find all occurrences of the pattern in the given input text. And if

morethan one pattern is matched against the given input text simultaneously, then it is known as, multiple

patternmatching.

In pattern-matching problem, it is convenient to consider that the text is examined through a window. The

window delimits a factor of the text and has usually the length of the pattern. It slides along the text from left to

right. During the search it is periodically shifted according to rules that are specific to each algorithm. When the

window is at a certain position on the text, the algorithm checks whether the pattern occurs there or not. If there

is a whole match, the position is reported.

The main objective behind the pattern-matching algorithms is to reduce the total number ofcharacter

comparisons between the pattern and the text to increase the overall efficiency. The efficiency of algorithms is

evaluated by their running times and the type of inputs they provided. The pattern matching algorithms are

widely used in network security environments, Information Retrieval, Text Editors etc.

1 Aloysius Institute of Management and Information Technology Mangalore, Karnataka, India.
2 Aloysius Institute of Management and Information Technology Mangalore, Karnataka, India.
3 AIMIT, Beeri, Mangalore, Karnataka, India.

International Journal of Latest Trends in Engineering and Technology

Special Issue SACAIM 2016, pp. 221-225

e-ISSN:2278-621X

Abstract-Data is stored in different forms but, text remains the main form of exchanging information. The

manipulation of text involves several problems among which pattern matching is one of them.Pattern-matching is

routinely used in various computer applications, like editors, retrieval of information etc. Pattern-matching

algorithm matches the pattern exactly or approximately within the text. This paper presents the Comparative

Analysis of various Pattern String matching algorithms. The highly efficient algorithms like The Brute Force

Algorithm, The Karp-Rabin Algorithm, and The Boyer Moore Algorithm are used for exact or approximate

patternmatching on diverse systems. After performing a detailed study on the above mentioned algorithms, we

have analysed the efficiency of algorithms based on their execution time and different types of inputs provided.

Keywords- Execution Time, Text, Pattern,Window.

Enola D’Souza, B Shalini Pai and Ms.SuchethaVijayakumar 221

II. TEXT PATTERN MATCHING ALGORITHM

A. The Brute Force Algorithm

The simplest approach for string matching problem is - The Brute ForceAlgorithm which is also known as

Naive Algorithm. It follows linear search approach. As shown in the Figure1the algorithm simply tries to match

the first letter of the Textand the first letter of the Pattern and checks whether these two letters are equal. If it is,

then check second letters of the text and pattern. If it is not equal, then move first letter of the pattern to the

second letter of the text. Then check these two letters. When we find a match, return its starting location.

Example:

Let the Text (T) be,

THIS IS A SIMPLE EXAMPLE
and the Pattern (P) be,

SIMPLE

Figure1. Example for Brute-Force Algorithm

Implementation:

B. The Karp-Rabin Algorithm

This algorithm exploits a hash function to speed up the search. It calculates a hash value for the pattern to be

searched and each subsequence of text to be compared.Then both the hash values are compared. If the hash

values are not equal the algorithm will estimate the hash value for next character sequence. If the hash values

are equal then the algorithm will do the brute force comparison with the pattern and the character sequence for

which the hash value matched as shown in Figure2.One popular and affective rolling hash function reads every

substring as a number in some ways, the base being usually large prime number.

Example:

Enola D’Souza, B Shalini Pai and Ms.SuchethaVijayakumar 222

Figure2. Example for Karp-Rabin Algorithm

Implementation:

C. The Boyer Moore Algorithm

Enola D’Souza, B Shalini Pai and Ms.SuchethaVijayakumar 223

This algorithm scans the characters of the Pattern from right to left beginning with the rightmost character and

performs the comparisons from right to left. In case of a match or a mismatch it uses two pre-computed

functions to shift the window to the right. These twoshift functions are called the good-suffix shift or matching

shift and the bad-character shift or occurrence shift as shown in Figure3.

Example:

Figure3. Example for Boyer-Moore Algorithm

Implementation:

Enola D’Souza, B Shalini Pai and Ms.SuchethaVijayakumar 224

III. COMPARATIVE ANALYSIS ON STRING PATTERN MATCHING ALGORITHM

In this paper, we analysed selected Single pattern string matching algorithms on the basis of Execution time and

search type. Each algorithm has certain advantages and disadvantages.

A. Algorithm Techniques: Every algorithm uses some special techniques to find pattern matching. Following

table shows the different techniques used by different algorithms.

Algorithm Techniques

Brute Force Algorithm Each character of the pattern is compared to a

substring of the text which is the length of the pattern,

until there is a mismatch or a match.

Rabin–Karp string search algorithm Hashing

Boyer–Moore string search algorithm Use both good suffix shift and bad character shift

B. Observations on Algorithms Used For Matching:

1) Brute-Force String Search Algorithm:The "naive" approach is easy to understand and implement but it can

be too slow in some cases. If the length of the text is ‘n’ and the length of the pattern is ‘m’, in the worst case it

may take (n * m) iterations to complete the task.The main advantage of Brute Force Algorithm is that wide

applicability, simplicity, reasonable algorithms forsome important problems (e.g., matrix multiplication, sorting,

searching, string matching).Weakness of the brute-force algorithms are unacceptably slow. It takes much time as

it search linearly.

Enola D’Souza, B Shalini Pai and Ms.SuchethaVijayakumar 225

2) Rabin Karp String Search Algorithm: It is a string searching algorithm that uses hashing to find any one of

a set of pattern strings in a text. This algorithm works well in many practical cases, but can exhibit relatively

long running times on certain examples, such as searching for a pattern string of 10,000 "A"s followed by a

single "B" in a search string of 10 million "A"s.

3) Boyer–Moore String Search Algorithm: It is a particularly efficient string searching algorithm. The

algorithm pre-processes the pattern that is being searched for, but not the text. Generally the algorithm gets

faster as the pattern being searched for becomes longer.TheBoyer-Moore Algorithm achieves sub-linear running

time by skipping characters in theinput text according to the bad character and good suffix heuristics.

C. Analysis

Table1.Table of findings for execution time(in seconds) based on various inputs for different algorithms.

Algorithm Length of

I/P

No.

of

executions

Nature of I/P Findings

AU AL M

1 2 3 1 2 3 1 2

3

Brute Force

(BFA)

Short 6 4 3 5 4 3 5 3 2 BFA is good for short strings and

search is faster for lower case than

uppercase letters. Long 8 5 3 8 7 5 9 7 6

Karp Rabin

(KRA)

Short 6 5 4 4 3 2 4 3 2 KRA results are similar to BFA but

and search is faster for mixed letters

compared to BFA. Long 8 6 5 8 7 6 9 6 5

Boyer Moore

(BMA)

Short 7 7 5 6 6 6 4 3 3 BMA is good for long strings than the

short.
Long

6 5 4 5 4 4 5 4 3

AU- All Uppercase AL- All Lowercase M- Mixed

By looking at the performance of various algorithms in Table 1, we can conclude that the best algorithm in

majority of the cases is Boyer-Moore. When the pattern is long, its advantage becomes significant. The reason to

this can be easily explained by the fact that it could skip more characters.The Brute-Force Algorithm obtains

similar results, but the performance is very slow when the pattern is very large. The Brute-Force could be a good

choice if the length of pattern is very short. Rabin-Karp obtains very good results in these tests. Its results are a

lot better than the naive solution and it is definitely the best choice in the situations where Boyce-Moore is not

adapted.

IV. CONCLUSION

We have presented the most famousPattern String Matching Algorithms. There are various scenarios where we

can use a particular type of algorithm. To answer the question: Which algorithm is the best? We implemented

the three algorithms using programming language (Java), and after conducting different tests and comparisons

with these implementations, the answer is that Boyer-Moore is the Best Algorithm. Not in all cases,but in the

practical cases, Boyer-Moore algorithm is extremely fast on large text that is why we can consider BM

algorithm as the best one. Rabin-Karp is also an effective algorithm, it is even better than BM when the pattern

and the text are very small. The naive algorithm is the worst solution, with the slowest execution time.

REFERENCES

[1] https://www.cs.purdue.edu/homes/ayg/CS251/slides/chap11.pdf
[2] http://www.geeksforgeeks.org/pattern-searching-set-7-boyer-moore-algorithm-bad-character-heuristic/

[3] http://www.stoimen.com/blog/2012/03/27/computer-algorithms-brute-force-string-matching/

[4] GeorgyGimel'farb, ”String matching Algorithms”, COMPSCI 369 Computational Science
[5] AkhtarRasool Amrita Tiwari et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) ,

2012,3394– 3397

[6] Algorithms for String matching,Marc GOU,July 30, 2014
[7] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Cliff ord Stein. Introduction to algorithms, Third edition. The MIT

Press, 2009.

