

INTERPOLATION SEARCH: A MEMOIZED
APPROACH

Deepti Verma1 and Dr. Kshama Paithankar2

I. INTRODUCTION

Searching is the process of finding a particular item in an available collection of items.
Literature and study material is evident of existence of many searching
methods/techniques especially in the area of computer science. While dealing with a
large amount of data, such process is the core to access the selective items in processing.
Mainly, linear search, binary search etc. are available to perform searching of data. The
performance of any searching algorithm is evaluated primarily in terms of time required
to seek data item or specific value. It has been observed that this seek time is a major
issue with existing searching algorithms. However, binary searching algorithm proves
better among the available algorithms. This issue has been taken up for further time
minimization and hence an efficient method as an extended version of binary search
namely Interpolation Search technique has been emerged.

Verification of the performance of Interpolation Search led to move towards optimization
of the performance of this algorithm. It has been observed that for optimization of time in
various algorithms, memoization has proved to be a method to achieve this objective[1].
Memoization is also known as function caching. It was first introduced in 1968 in the
context of Artificial Intelligence [2]. It is a way for machines to learn from past
experiences. Here, it is proposed to develop an algorithm of interpolation search
MemIPS() with memoized approach to optimize the time of element searching.

1 Shri VaishnavSM Institute of Management, Indore
2 Shri VaishnavSM Institute of Management, Indore

International Journal of Latest Trends in Engineering and Technology
Vol.(7)Issue(4), pp.218-224

DOI: http://dx.doi.org/10.21172/1.74.029
e-ISSN:2278-621X

Abstract: While dealing with a large amount of data, methods/ techniques are to be used to perform
searching appropriate data. Time is the core concern while evaluating performance of these
techniques. While addressing this issue, for further time minimization, an efficient method as an
extension of binary search namely Interpolation Search technique has been emerged. Observations
led to move towards optimization of the performance of this algorithm. Literature reveals
optimization of time in various algorithms achieved through an approach of memoization. Hence,
interpolation search technique is implemented with memorization in this paper. The results indicate a
significant time reduction and thus achieve the objective of improving performance of interpolation
search technique.

Keywords: Interpolation Search, Memoization, Execution Time.

Interpolation Search: A Memoized Approach 219

The concept of memoization is described in section 2. Section 3 includes the formal
description of Non-memoized Interpolation search function NIPS(). Formal description of
memoized Interpolation Search function MemIPS() is presented in section 4. Section 5
deals with case study to show performance of MemIPS() and NIPS(). Section 6 covers
discussion on results in different cases. Finally, we end-up with the conclusion and
future scope in section 7.

II. MEMOIZATION

Memoization proves to be a technique for reducing the execution time of program [3].
Memoized function stores the output and provides it when user calls same function again
with same value [4]. In other words, using memoization programs could “recall” previous
computations and thus avoid repeated work [5][6]. The key idea behind this is to speed
up the execution of a function by maintaining the cache of its previous computations and
look-up into the cache instead of computing data repeatedly.

Normally, if functions are being called more than once, its computational code is
executed and the results of each iteration are to be stored. It consumes time and affects
the memory utilization as well. Excluding for the first time, in every next step, results are
looked up in cache resulting in reducing redundancy, computation time and thus
improvement of performance and efficiency [7][8].

III. FORMAL DESCRIPTION OF NIPS()

Interpolation search is a classical method for searching through ordered random data[9].
It is retrieving a desired record by key in an ordered file by using the value of the key and
the statistical distribution of the keys. It works on Divide and Conquer method[10]. Here,
the algorithm NIPS() is presented.

Algorithm NIPS()

/*arr[] represent the data set*/
/*n1 contains the size of data set*/
/*item is an integer type variable which holds the key value which we want to search */
/*mid is a class level integer variable*/
/*last and first are the integer type variables to hold the first and last position value*/
Start
Step 1: int inpoSearch (int arr[],int n1,int item)
/*Function declaration with the parameters of data set and key value and size of data
set.*/
Step 2: first = 0 ;
 last = n1-1;
 /* initializes first with 0 and size of data set is stored in last.*/
Step 3: while(first <= last)
 {mid = first + (last - first)*((item - arr[first]) / (arr[last] - arr[first]));
 if (arr[mid] == item)
 {return 1;}

Deepti Verma and Dr. Kshama Paithankar 220

/*To find the mid, and if this element matches the item then return 1*/
Step 4: if (item < arr[mid])
 last = mid -1;
 else
 first = mid + 1;
/*Updating values of first and last as per the condition. */
Step 5: if (first > last)
return 0;
/*returning the value 0 if no search*/
End

IV. FORMAL DESCRIPTION OF MemIPS()

In the previous section, regular NIPS() has been discussed. Now in this section,
MemIPS() algorithm is being presented. MemIPS() accepts the values entered by the user
and verifies the output. The value found is stored in variable and whenever needed, this
variable will be extracted as store value. The process continues till the result is available.

Algorithm MemIPS()

/* v is an integer type variable*/
/* st1 and ed1 are integer type local variables*/
/* b is an integer type local variable used to retrieve output*/
Start
Step 1: st1=Systemtime
/* to stores starting time */
Step 3: b=d1.memoIps();
/* Retrieving output */
ed1=Systemtime;
/*getting ending time */
Step 4: tot1=(ed1-st1);
Message ("Memo Time "+tot1);
/*Showing total time with memoization*/
Step 5: if(v==1)
Message ("Value Found= "+b);
/*When the value is found then show the output with time*/
End

V. CASE STUDY

The performance of proposed algorithm MemIPS() and that of NIPS() has been
evaluated using three cases. Case 1 includes the study for data size 10 whereas Case 2
deals with data size as 25. Data size 50 was considered for study in Case 3. These
different cases have been studied for the NIPS() as well.

Case 1: Study for data size 10

Interpolation Search: A Memoized Approach 221

Here, the performance of NIPS() and MemIPS() is discussed with the list containing 10
values. Table-1 illustrates the performance in terms of time whereas Figure-1 represents
the trend of time including that memoized function improve the performance
consistently.

Table-1: Dataset of 10 values (Values from 10 to 100)

Search

Value

Non
Memoize
d Time

Memoize
d Time

Differen
ce

10 2265 1359 906
20 2718 1359 1359
30 3170 1358 1812
40 3171 1359 1812
50 3623 1359 2264
60 3623 1359 2264
70 4982 1359 3623
80 4529 1359 3170
90 4528 1359 3169
100 2264 1358 906
Not
Found

2717 1812 905

Figure-1: Performance of MemIPS() vs NIPS() in Case 1.

Case 2: Study for data size 25

In this Case, the list of dataset containing 25 values is experimented with proposed
MemIPS() and NIPS() as well as shown in Table-2. Similarly, Figure-2 represents the
trend of time. In this Case increasing the size of the dataset also results in improving time
and thus the performance of algorithm using memoization.

Table-2: Dataset of 25 values (Values from 10 to 250)

Search
Value

Non
Memoized
Time

Mem
oized
Time

Differen
ce

Range

Deepti Verma and Dr. Kshama Paithankar 222

50 7699 1358 6341 10-100
80 4076 1359 2717 10-100

120 4982 1359 3623
100-
150

140 5888 1359 4529
100-
150

170 5888 1811 4077
150-
200

190 6340 1359 4981
150-
200

220 7693 1358 6335
200-
250

240 7699 1359 6340
200-
250

110 4076 1358 2718 random
210 6793 1358 5435 random
Not Found 7699 1812 5887

Figure-2: Performance of MemIPS() vs NIPS() in Case 2.

Case 3: Study for data size 50

A list containing 50 values for implementing NIPS() and MemIPS() is used in this Case.
Table-3 highlights the outcome in terms of time and Figure-3 represents the trend of this
time. Here, it is observed that the performance of MemIPS() still follows the trend of
optimization of time to improve performance of searching.

Table-3: Dataset of 50 values (Values 10 to 500)

Search
Value

Non
Memoized
Time

Mem oized
Time

Diffe
rence

range

50 3170 1359 1811 10-100
80 4982 1359 3623 10-100
120 4982 1359 3623 100-200
180 5887 1359 4528 100-200

Interpolation Search: A Memoized Approach 223

210 6794 1359 5435 200-300
250 7699 1359 6340 200-300
350 9511 1358 8153 300-400
370 9963 1359 8604 300-400
420 11322 1358 9964 400-500
460 11775 1359 10416 400-500
300 8152 1359 6793 random
440 11775 1359 10416 random
NotFo
und 2717 1359 1358 NotFound

Figure-3: Performance of MemIPS() vs NIPS() in Case 3.

VI. DISCUSSION

With the help of three cases, it has been noticed that MemIPS() really improves the
performance of searching as compare to regular NIPS(). For instance, in Case 1 the time
recorded to search the first element is 226 5ms using NIPS() whereas using MemIPS() it
is noted 1359 ms thereby reducing the time by 906 ms clearly as shown in Table-4.

Table-4: Comparative Performance in different Cases

cas
e

Index Search
Value

Non
Memoized
Time

Memoiz
ed Time

Differe
nce

1

First 10 2265 1359 906
Mid 50 3623 1359 2264
Last 100 2264 1358 906

2

First 50 7699 1358 6341
Mid 170 5888 1811 4077
Last 210 6793 1358 5435

3

First 50 3170 1359 1811
Mid 210 6794 1359 5435
Last 460 11775 1359 10416

Deepti Verma and Dr. Kshama Paithankar 224

Figure-4: Cumulative bracket of MemIPS() and NIPS().
Similarly, for mid element, time recorded is 3623 ms using NIPS() and in MemIPS() it is
1359 ms. Here, time is reducing by 2264 ms and in the case of last element the searching
time is recorded using NIPS() is 2264 ms where as using MemIPS() it is computed
as1358 ms thereby reducing by 906 ms. This trend is observed in Case 2 and Case 3 also
as represented by Figure-4. Presently, the performance of MemIPS() is evaluated for first,
middle and last elements of the lists. However, the trends of performance indicate that it
may surely be applicable for the element at any position in the list.

VII. CONCLUSION
In this paper, the proposed MemIPS() proves to be a effective algorithm that optimizes
the execution time with optimum utilization of memory and thus improving the overall
performance of the Regular Interpolation Search algorithm. However, there exists scope
of further enhancement in many aspects. Presently a single data type has been used where
as multiple data types may be worked in order to improve the performance
proportionally. Further, data types long, float and double may be used leading to more
accuracy of result.

REFERENCES
[1] Purey, J., Paithankar, K., Memoization: a Technique to optimize Performance of Searching,

National Conference on “Challenges of Globalization and Strategies for Competitiveness” Shri
Vaishnav Institute of Management, Indore, January, 2015, pp 486-491.

[2] Norvig,P. “Techniques for Automatic Memoization with Applications to Context-Free Parsing”,
University of California, Volume 17,Issue1, March 1991, pp 91-98 .

[3] Pfeffer,A. “Sampling with Memoization”, School of Engineering and Applied Sciences, Harvard
University, 2007.

[4] Crockford, D. “Java Script The Good Parts”, O’Reilly, May 2008, pp 44-45.
[5] Ziarek, L; Sivaramakrishnan,K.C.and Jagannathan, S. “Partial Memoization of Concurrency and

Communication”, Department of Computer Science Purdue University, Proceedings of the 14th
ACM SIGPLAN International Conference on Functional Programming. Edinburgh,
Scotland, ACM, pp. 161 172.

[6] Acar,U.A.; Blelloch,G.E. and Harper,R. “Selective Memoization”, School of Computer Science
Carnegie Mellon University Pittsburgh, PA 15213, 2003.

[7] Brown,.D. and Cook, W.R. “Monadic Memoization Mixins”, Department of Computer Sciences,
University of Texas at Austin, 2006.

[8] Purey,J and Muley,K. “Auto Response Memoization using JAVA”, National Conference on
Emerging Technologies in Electronics, Mechanical and Computer Engineering (ETEMC) April
2010.

[9] Graham, S.L. and Rivest, R.L. “Interpolation Search A Log LogN Search”, 3 July 1993.
[10] Demaine, E.D.; Jones, T. and Patrascu,M. “Interpolation Search for Non- Independent Data”,

Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA) , 2004,
pp 529–530.

