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I. INTRODUCTION 
Most of our traditional tools for formal modeling, reasoning and computing are crisp, deterministic, and precise in 

character. Crisp means dichotomous, that is, yes-or-no type rather than more-or-less type. In traditional dual logic, 

for instance, a statement can be true or false—and nothing in between. In set theory, an element can either belong to 

a set or not; in optimization a solution can be feasible or not. Precision assumes that the parameters of a model 

represent exactly the real system that has been modeled. This generally implies that the model is unequivocal, that is 

it contains no ambiguities. Certainty eventually indicates that we assume the structures and parameters of the model 

to be definitely known and that there are no doubts about their values or their occurrence. 

Most of the early interest in fuzzy set theory pertained to representing uncertainty in human cognitive processes[5]. 

Fuzzy set is now applied to problems in engineering, business, medical and related health sciences, and the natural 

sciences. In an effort to gain a better understanding of the use of fuzzy set theory in research and to provide a basis 

for future research, a literature review of fuzzy set theory has been conducted. While similar survey efforts have 

been undertaken for other areas. Over the years there have been successful applications and implementations of 

fuzzy set theory in production management. Fuzzy set theory is being recognized as an important problem modeling 

and solution technique.  
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Abstract : Fuzzy set theory has been used to model systems that are hard to define precisely. As a methodology, fuzzy set 
theory incorporates imprecision and subjectivity into the model formulation and solution process. Fuzzy set theory 
represents an attractive tool to aid research in many fields when the dynamics of the production environment limit the 
specification of model objectives, constraints and the precise measurement of model parameters. This paper provides a 
survey of the application of different criteria for ranking fuzzy numbers using fuzzy set theory. A classification scheme for 
fuzzy applications in research is defined. Multi-Criteria Decision Making (MCDM) methods have evolved to accommodate 
various types of applications. Dozens of methods have been developed, with even small variations to existing methods 
causing the creation of new branches of research. This paper performs a literature review of common Multi-Criteria 
Decision Making methods, examines the advantages and disadvantages of the identified methods, and explains how their 
common applications relate to their relative strengths and weaknesses. The analysis of MCDM methods performed in this 
paper provides a clear guide for how MCDM methods should be used in particular situations. 
Keywords: Fuzzy set theory, multi-criteria decision making; multi-criteria decision analysis, Decision Makers. 
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As evidenced by the large number of citations found, fuzzy set theory is an established and growing research 

discipline. The use of fuzzy set theory as a methodology for modeling and analyzing decision systems is of 

particular interest to researchers in engineering and management due to fuzzy set theory’s ability to quantitatively 

and qualitatively model problems which involve vagueness and imprecision.  

II. MODELING UNCERTAINTY USING FUZZY SET THEORY 

According to [3][4][6], a decision problem is said to be complex and difficult, if there exist: 

  Multiple criteria—both qualitative and quantitative in nature; 

  Multiple decision makers; 

  Uncertainty and risk; and 

  Incomplete information, imprecise data, and vagueness surrounding the decision making. 

The ideal assessment methodology should therefore be capable of synthesizing multi-factors to reach an overall 

evaluation; it should have a way to process vague information and expert judgment; and it should be flexible enough 

to handle situations which are slightly different from past experience. 

III. OVERVIEW OF FUZZY DECISION FRAME WORK 

Fuzzy set theory does not replace probability theory but rather provides a solution to problems that lack 

the mathematical rigor required by probability theory. Membership function, linguistic variables, natural 

language computation, linguistic approximation, fuzzy integrals and fuzzy weighted sum are main 

concepts of fuzzy set theory applied to approximate characterization and decision making. A linguistic 

variable differs from numerical variable in that its values are not numbers but words or sentences in a 

natural or artificial language[2][7]. Linguistic variables such as “poor management,” “good performance,” 

and “moderate risk” describe the vague concept. A fuzzy decision-making framework generally consists 

of the following steps: 

 Defining and specifying the types of fuzzy numbers and their membership functions to be used by 

Decision Makers; 

 Establishing the scale of preference structure to be used by Decision Makers; 

 Assigning the fuzzy values to attributes based on their performance on the decision criteria; 

 Aggregating fuzzy numbers across the Decision Makers; 

 Determination of global importance or overall value of each of the decision criteria;  

 Defuzzification; and 

 Ranking of alternatives. 

IV. FUZZY MEMBERSHIP FUNCTION 

Membership function of an element represents a degree to which  the element belongs to a set. Let ia  be 

a fuzzy number such that Rai   (set of real numbers) and considered in the form of  

      ia  = {x1, x2 ,x3, x4},         for i = 1,2, . . . ,m 
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where x1 < x2 < x3 < x4= scale of preference structure to be used by Decision Makers and m = number of 

fuzzy number to be used in the analysis. Figs. 1 and 2 show the graphical representation of trapezoidal 

and triangular membership function )(x , respectively. 

 

 

 

 

  

 

 

 

 

 

 

 
 

Figure 1: Graphical representation of trapezoidal membership function 

 

 

 

 

 

 

 

 

 

Figure 2 :Graphical representation of triangular Membership function 

The normalized trapezoidal membership function of an alternative ai can be expressed in the 

form of 
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V. RANKING FUZZY NUMBERS 

If all the grades are real numbers, a total grade which is on a linear scale can be obtained. When 

the grades are represented by fuzzy sets, the overall grade which is also a fuzzy set can be 

obtained. One is then faced with another ranking problem in which the grade is unique but fuzzy 

with uncertainty. In the statistical decision analysis problems also, there are several decision 

making criteria to rank the alternatives. And in that all the criteria for ordering random variables 

are designed to define a function to convert the probability distribution to a single value (index) 

by which the decision could be made based on the largest index value. The same idea can be 

carried over to the ordering problem of fuzzy variables. There are many criteria to define the 

index function with different emphases and no single criterion is satisfactory for all situations. 

The choice of criteria is context dependent. 

VI. DEFUZZIFICATION 

Defuzzification is an operation that produces a non-fuzzy or crisp value that adequately 

represents the degree of satisfaction of the aggregated fuzzy number. A fuzzy number can be 

defined by a crisp quantity that represents the “defuzzified” or “expected” value of the fuzzy 

number. Fuzzy numbers are a generalization of the concept of the interval of confidence. As we 

are dealing with a number represented by an interval, ranking this number is not a 

straightforward process. Therefore, calculating the “expected value” of the fuzzy number will 

render the fuzzy number ranking and comparison much easier. Different methodologies have 

been developed to capture an expected value of a fuzzy number[1]. For example a trapezoidal 

fuzzy number be parameterized by x1, x2 ,x3, x4 as shown in Fig. 1, then its defuzzified value e is 

given by the following equation [1]: 

e = (x1 + x2 + x3 + x4) / 4                                                                   (2) 

Similarly, for triangular fuzzy number as represented in Fig. 2 

e = (x1 + 2x2 + x3) / 4                                                                        (3) 
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A. THE PSEUDO-EXPECTATION CRITERION  

Under this criterion, we define an index function as follows: 

     dxxxAD Aii 
1

0
1

      

                                 (4) 

Where µ Ai  (x) is the membership function for the fuzzy risk Ai. 

As an example, suppose that two alternatives, A1 and A2, have fuzzy risk values as shown in 

figure 2. For triangular memberships, Equation 4 can be reduced to 

      
61

cbaabAD i


                            (5)           

hence for alternative A1, 

      213.0
6

0.14.02.02.00.1
11




AD       

and for alternative A2,   

               175.0
6

8.06.01.01.08.0
21

AD               

since D1 (A1) > D1 (A2), thus A1 is preferred to A2 ( interpreted as A1 has higher risk than A2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

                       Figure 3: Fuzzy risk values for alternatives  A1 and A2 
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Note that the membership functions are not required to be normalized. Hence D1 (Ai) is not 

weighted average in the usual sense. The process may lead to a pathological ordering in some 

cases. For instance, suppose that the two fuzzy risks, A1 and A2, are as shown in figure 3.  

Then, we have 

                 16.0
6

8.04.0008.0
11

AD  

                 048.0
6

0.195.09.09.01
21

AD  

 

 

 

 

 

 

 

 

 

 

 

 

 

    Figure 4 : A pathological case for criterion 1 

Since D1 (A1) > D1 (A2), A1 is  preferred to A2. Needless  to say, this decision does not agree  

with our intuition at all.  

B. THE GRAVITY CENTER CRITERION 

Define the following mapping function as index function to order the different alternatives Ai: 
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Which is nothing but the abscissa of the center of gravity of Ai. When the membership function 

is triangular, Equation 6 can be reduced to 
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     
32

cbaAD i


                    (7) 

For the example of Figure 3, we have 

      53.0
3

0.14.02.0
12




AD  

      5.0
3

8.06.01.0
22




AD  

Since D2 (A1) > D2 (A2) , alternative A1  is preferred to alternative A2, a conclusion which is not 

different from the previous result. However, for Figure 4, we have 

D2 (A1) = 0.4;  D2 (A2) = 0.95 

Under this criterion, since D2 (A2) > D2 (A1), we prefer A2 to  A1  which is an intuitively 

reasonable ordering. This criterion eliminates the effect of the area under the membership 

function and is better than criterion 1 in general. 

C. THE AVERAGE MEAN CRITERION 

Define the mean of an α-cut as follows (In figure 5) 

m α = ½ (a α + b α)                       (8) 

then, the average mean value is defined by 

     


1

8
0

dmAD i              (9) 

Which is used as the index value. For triangular membership functions, Equation 9 reduces to 

   D8 (Ai) = ¼ (a + 2c + b)                      (10) 

And for trapezoidal membership functions, we have 

   D8 (Ai) = ¼ (a + c + d + b)                     (11) 

for the example of figure 5, this criterion will lead to the conclusion that alternative A2 is 

preferable since 

D8 (A1) = ¼ (0.2 + 2*0.4 + 1.0) = 0.5,  

D8 (A2) = ¼ (0.1 + 2*0.6 + 0.8)  = 0.525  

 And,   D8 (A2) > D8 (A1)  

 

 

 



An Analysis Of Different Criteria For Ranking Fuzzy Numbers                  187 

 

 

 

 

          

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

          

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                               Figure 5: Average mean criterion 
 
 
VII. CONCLUSION 
Throughout the study, it has been observed that fuzzy set theory has been applied to most traditional areas of 
research on fuzzy set theory in different fields has grown in recent years. Fuzzy  research in quality management , 
forecasting , and job scheduling  have experienced tremendous growth in recent years. The fuzzy set theory which 
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deals with a set of objects characterized by a membership function that assigns to each object a grade of membership 
ranging between zero and one is introduction and attempt is made to model uncertainty by using fuzzy numbers. 
The methodology of extracting fuzzy numbers from experts is presented. The concepts that must be considered 
when modeling uncertainty using fuzzy arithmetic are introduced. Various approaches for representing uncertainty 
are discussed. A brief discussion of evaluation of multi-attribute based on multi-attributes decision theory is made.  
The knowledge based are condensed into the fuzzy system description in which the, linguistic information can be 
processed using fuzzy set theory. Fuzzy algorithms for processing ill-defined information are developed when 
modeling uncertainty using fuzzy arithmetic are introduced. Methods for defuzzifying a fuzzy number is described, 
to define a fuzzy number by crisp quantities that represent the defuzzified or expert value of the fuzzy number.   
The appropriateness and contribution of fuzzy set theory to problem solving in research may be seen by paralleling 
its use in operation research. Many researchers identified that fuzzy set theory can be used in operation research as a 
language to model problem which contain phenomena or relationships, as a tools to analyze such models in order to 
gain better insight into the problem and as an algorithmic tool to make solution procedures more stable or faster. 
Numerous MCDM methods have been created and utilized over the last several decades. In recent years, because of 
ease of use due to advancing technologies, combining different methods has become common place in MCDM. The 
combination of multiple methods addresses deficiencies that may be seen in certain methods. These methods, along 
with the methods in their original forms, can be extremely successful in their applications, but only if their strengths 
and weaknesses are properly assessed. Certain problems could easily utilize a method that may not be best suited to 
solve it. This paper assessed the more common methods of MCDM in order to benefit practitioners to choose a 
method for solving a specific problem. Identification of common MCDM methods and identification of strengths 
and weaknesses is a major step in establishing the foundation of research. In this area, but it is only the first step.  
 

REFERENCES 
[1]. Bellman, R.E. and Zadeh, L.A. (1970).” Decision-making in a fuzzy environment”, Manage. Sci. 17 (4) 141–154. 
[2]. Bourgeron, P., Humphries, H.C. and Reynolds, K.M. (2000). “Conducting large-scale conservation evaluation and 

conservation area selection using a knowledge-based system.” In Proceedings of the 4th  International Conference on 
Integrating GIS and Environmental  Modeling, 2-8 Sept, Banfs, Alberta.  

[3]. Hipel k. W .(1993). “Multiple participant multiple criteria decision making.”, IEEE Trans. Man Cybern.23 , 1184-1189. 
[4]. Velasquez M. and Patrick T. Hester (2013). “An Analysis of Multi-Criteria Decision Making Methods.”, International 

Journal of Operations Research Vol. 10, No. 2, 56, Dominion University, 
[5]. Zadeh, L.A. (1965), “Fuzzy Sets”, Inform. and Control 8 338–353.Norfolk, VA USA. 
[6]. Zeinab D., Mir Mohsen Pedram, Jamshid Shanbehzadeh (2010). “A Multi-Criteria Decision Making Based Method for 

Ranking Sequential Patterns.”, Proceedings of international multi conference of engineers and computer scientists, Vol. I, 
IMECS, Hong Kong. 

[7]. Zimmermann, H.-J. (1993). “ Fuzzy Set Theory and Its Applications”, Kluwer Academic Publishers. 


