International Journal of Latest Trends in Engineering and Technology Vol.(7)Issue(3), pp. 354-363 DOI: <u>http://dx.doi.org/10.21172/1.73.547</u> e-ISSN:2278-621X

ON INTUTIONISTIC FUZZY SUPRA PRE-OPEN SET AND INTUTIONISTIC FUZZY SUPRA-P RE-CONTINUITY ON TOPOLOGICAL SPACES

C. Indirani¹

Abstract- In this paper, we introduce and investigate a new class of sets and functions between topological spaces called intuitionostic fuzzy supra pre-open set intuitionistic fuzzy supra pre-open maps respectively.

Keywords –Intuitionistic fuzzy supra topological spaces, intuitionistic fuzzy supra preopen sets, intuitionistic fuzzy supra pre-continuous mappings and intuitionistic fuzzy supra pre-open set.

1. Introduction and preliminaries

The concept of intuitionistic fuzzy set is defined by Atanassov as a general-ization of the concept of fuzzy set given by Zadeh [13]. Using the notation of intuitionistic fuzzy sets, Coker [3] introduced the notation of intuitionistic fuzzy topological spaces. In 1983 Mashhour et al [8] inrtoduced the supra topological spaces and studied s-continuous maps and s^{\square} - continuous functions. In 1987, Abd El-Monsef et al. [1] introduced the supra topological spaces and studied fuzzy supra-continuous functions and obtained some properties and characteriza- tions. In 1996, Won Keun Min [12] introduced fuzzy scontinuous, fuzzy s-open and fuzzy s-closed maps and established a number of characterizations. In 2008, Devi et al [4] introduced and studied a class of sets and a maps between topo-logical spaces called supra α -open and supra α -continuous functions and studied some of the basic properties for this class of functions. In 1999, Necla Turanl [11] introduced the concept of intuitionistic fuzzy supra topological space. In this pa-per, we study the basic properties of intuitionistic fuzzy supra pre-open sets and introduce the of intuitionistic fuzzy supra pre-continuous maps and investigate notation several properties of intuitionistic fuzzy supra pre-continuous maps.

Throughout this paper, by (X, τ) or simply by X we will denote the intuitionistic fuzzy supra topological space (briefly, IFsTS). For a subset A of a space (X, τ) , cl(A), int(A) and \overline{A} denote the closure of A, the interior of A and the complement of A respectively. Each intuitionistic fuzzy supra set (briefly, IFsS) which belongs to (X, τ) is

¹Bannari Amman Institute Of Technology, Sathyamangalam 638 401.

called intuitionistic fuzzy supra open set (briefly, IF- sOS) in X. The complement of an IFsOS A in X is called an intuitionistic fuzzy supra fuzzy supra closed set (IFsCS) in X. We introduce some basic notations and results that are used in the sequel.

Definition 1.1. [2] Let X be a non empty fixed set and I be the closed interval [0,1]. An intuitionistic fuzzy set (IFS) A is an object of the following form

$$A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle : x \Box X \}.$$

where the mappings μ_A : X \rightarrow I and v_A : X \rightarrow I denote the degree of membership (namely $v_A(x)$) and the degree of nonmembership (namely $\mu_A(x)$) for each element $x \square X$ to the set A respectively and $0 \le \mu_A(x) + \nu_A(x) \le 1$ for each $x \square X$. Obviously, every fuzzy set A on a nonempty set X is an IFS of the following form

 $A = \{ < x, \mu_A(x), 1 - \mu_A(x) > : x \Box X \}.$

Definition 1.2. [2] Let A and B are IFSs of the form $A = \{ \langle x, \mu A(x), \nu A(x) \rangle : x \square X \}$ and $B = \{ \langle x, \mu B(x), \nu B(x) \rangle \colon x \Box X \}$. Then

(i) A \Box B if and only if $\mu_A(x) \le \mu_B(x)$ and $\nu_A(x) \ge \nu_B(x)$;

(ii) $A = \{ < x, \mu_A(x), \nu_A(x) > : x \Box X \}$ (iii) $A \cap B = \{ \langle x, \mu_A(x) \land \mu_B(x), \nu_A(x) \lor \nu_B(x) \rangle : x \Box X \}; (iv) A \lor B = \{ \langle x, \mu_A(x) \lor \mu_B(x) \rangle \}$ (x), $v_A(x) \land v_B(x) > : x \Box X$; (v) A = B iff $A \Box B$ and $B \Box A$; (vi) $[]A = \{<x, \mu_A(x), 1 - \mu_A(x) > : x \square X\}; (vii) <>A = \{<x, 1 - \nu_A(x), \nu_A(x) > : x \square X\};$ (viii) $1 \sim = \{ < x, 1, 0 >, x \square X \}$ and $0 \sim = \{ < x, 0, 1 >, x \square X \}$.

We will use the notation $A = \langle x, \mu_A(x), \nu_A(x) \rangle$ instead of $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle, x \square X \}$. Definition 1.3. [10] A family τ of IFsS's on X called an instuitionistic fuzzy supra topology (IFsT for short) on X if $0_{\sim} \Box \tau$, $1_{\sim} \Box \tau$ and τ is closed under arbitrary suprema. Then we call the pair (X, τ) an instuitionistic fuzzy supra topological space (IFsTS for short). Each member of τ is called an instuitionis- tic fuzzy supra open set and the complement of instuitionistic fuzzy supra open set is called instuitionistic fuzzy supra closed set. The instuitionistic fuzzy supra closure of an IFsS A is denoted by s-Here s-cl(A) is the intersection of all instuitionistic fuzzy supra closed sets cl(A). containing A. The instuitionistic fuzzy supra interior of A will be denoted by s-int(A). Here, s-int(A) is the union of all instuitionistic fuzzy supra open sets contained in A.

Definition 1.4. Let (X, τ) be an instuitionistic fuzzy supra topological space. An IFS A \Box IF (X)

is called

- (i) instuitionistic fuzzy supra α -open [7] iff A \Box s-int(s-cl(s-int(A))),
 - (ii) instuitionistic fuzzy supra β -open [6] iff A \Box s-cl(s-int(s-cl(A))),
- (iii) instuitionistic fuzzy supra b-open [6] iff A \Box s-int(s-cl(A)) \lor s-cl(s-int(A)),

Let f be a mapping from an ordinary set X into an ordinary set Y, if B =

 $\{\langle y, \mu_A(y), \nu_B(y) \rangle : y \Box Y \}$ is an IFsT in Y, then the inverse image of B under f

 $\text{ is an IFsT defined by } \ \mathbf{f}^{-1}(B) = \{\!\!\!\!< \!\!\! x, \mathbf{f}^{-1}(\mu_B)(x), \ \mathbf{f}^{-1}(\nu_B)(x) \!\!\!\!> \!\!\!\!: x \mathrel{ \square } X \, \}.$

The image of IFsT A = { $\langle y, \mu_A(y), \nu_A(y) \rangle$: y \Box Y } under f is an IFsT defined by f(A)

 $\{\langle y, f(\mu A(y)), f(\nu A(y)) \rangle : y \Box Y \}.$

=

2. Intuitionistic fuzzy supra pre-open set.

In this section, we introduce a new class of open sets called intuitionistic fuzzy supra preopen sets and study some of their basic properties.

Definition 2.1. Let (X, τ) be an intuitionistic fuzzy supratopological space. An intuitionistic fuzzy set A is called an intuitionistic fuzzy supra pre-open set (briefly IFsPOS) if A \Box s-int(s-cl(A)). The complement of an intuitionistic fuzzy supra pre-open set is called an intuitionistic fuzzy supra pre-closed set (briefly IFsPCS).

Theorem 2.2. Every intuitionistic fuzzy supra-open set is an intuitionistic fuzzy supra pre-open.

Proof. Let A be an intuitionistic fuzzy supra-open set in (X, τ) . Then A \Box s-int(A), we get A \Box s-int(s-cl(A)) then s-int(A) \Box s-int(s-cl(A)). Hence A is supra pre-open in (X, τ) .

The converse of the above theorem need not be true as shown by the following example.

Example 2.3. Let $X = \{a, b\}, A = \{x, <0.5, 0.2>, <0.3, 0.4>\}$,

 $B = \{x, <0.3, 0.4>, <0.6, 0.5>\}$ and $C = \{x, <0.3, 0.4>, <0.2, 0.5>\}$,

 $\tau = \{0_{\sim}, 1_{\sim}, A, B, A \cup B\}$. Then C is called intuitionistic fuzzy supra pre-open set but it is not an intuitionistic fuzzy supra-open set.

Theorem 2.4. Every intuitionistic fuzzy supra α -open set is an intuitionistic fuzzy supra pre-open

Proof. Let A be an intuitionistic fuzzy supra α -open set in (X, τ) . Then A \square s-int(s-cl(s-int(A)), it is obvious that s-int(s-cl(s-int(A)) \square s-int(s-cl(A)) and A \square s-int(s-cl(A)). Hence A is an intuitionistic fuzzy supra pre-open in (X, τ) .

The converse of the above theorem need not be true as shown by the following example. Example 2.5. Let $X = \{a, b\}, A = \{x, <0.3, 0.5>, <0.4, 0.5>\}$,

 $B = \{x, <0.4, 0.3>, <0.5, 0.4>\}$ and $C = \{x, <0.4, 0.5>, <0.5, 0.4>\}$,

 $\tau = \{0_{\sim}, 1_{\sim}, A, B, A \cup B\}$. Then C is called an intuitionistic fuzzy supra pre-open set but it is not an intuitionistic fuzzy supra α -open set.

Theorem 2.6. Every intuitionistic fuzzy supra pre-open set is an intuitionistic fuzzy supra β -open

Proof. Let A be an intuitionistic fuzzy supra pre-open set in (X, τ) . It is obvious that s-int(s-cl(A)) \square s-cl(s-int(s-cl(A))). Then A \square s-int(s-cl(A)). Hence A \square s-cl(s-int(s-cl(A))).

The converse of the above theorem need not be true as shown by the following example. Example 2.7. Let $X = \{a, b\}, A = \{x, \langle 0.2, 0.3 \rangle, \langle 0.5, 0.3 \rangle\}$,

 $B = \{x, <0.1, 0.2>, <0.6, 0.5>\}$ and $C = \{x, <0.2, 0.3>, <0.2, 0.3>\},\$

 $\tau = \{0_{\sim}, 1_{\sim}, A, B, A \cup B\}$. Then C is called an intuitionistic fuzzy supra pre-open set but it is not an intuitionistic fuzzy supra pre-open set.

Theorem 2.8. Every intuitionistic fuzzy supra pre-open set is an intuitionistic fuzzy supra b-open

Proof. Let A be an intuitionistic fuzzy supra pre-open set in (X, τ) . It is obvious that A \square s-int(s-cl(A)) \square s-int(s-cl(A)) \square s-int(s-cl(A))), Then A \square s-int(s-cl(A)). Hence A \square s-int(s-cl(A)) \square s-cl(s-int(A))).

The converse of the above theorem need not be true as shown by the following example.

Example 2.9. Let $X = \{a, b\}$, $A = \{x, <0.5, 0.2>, <0.3, 0.4>\}$, $B = \{x, <0.3, 0.4>, <0.6, 0.5>\}$ and $C = \{x, <0.3, 0.4>, <0.4, 0.4>\}$, $\tau = \{0_{\Box}, 1_{\Box}, A, B, A \cup B\}$. Then C is called an intuitionistic fuzzy supra pre-open set but it is not an intuitionistic fuzzy supra pre-open set.

 $IFsOS \ \rightarrow \ IFs\alpha OS$

& ↓

IFsbOS \leftarrow IFsPOS \rightarrow IFs β OS Theorem 2.10.

- (i) Arbitrary union of intuitionistic fuzzy supra pre-open sets is always an in-tuitionistic fuzzy supra pre-open.
- (ii) Finite intersection of intuitionistic fuzzy supra pre-open sets may fail to be an intuitionistic fuzzy supra pre-open.
 - (iii) X is an intuitionistic fuzzy supra pre-open set.

Proof.

- (i) Let A and B to be intuitionistic fuzzy supra pre-open sets. Then A □ s-int(s-cl(A)) and B □ s-int(s-cl(B)). Then A ∪ B □ s-int(s-cl(A)). Therefore, A ∪ B □ s-int(s-cl(A ∪ B))) □ s-int(v (s-cl(A ∪ B))) □ s-int(s-cl(∪ (A ∪ B))) is an intuitionistic fuzzy supra pre-open sets.
- (ii) Let $X = \{a, b\}$, $A = \{x, <0.3, 0.4 >, <0.2, 0.5 >\}$, $B = \{x, <0.3, 0.4 >, <0.4, 0.4 >\}$ and $\tau = \{0_{\sim}, 1_{\sim}, A, B, A \cup B\}$. Hence A and B are intuitionistic fuzzy supra pre-open but $A \cap B$ is not intuitionistic fuzzy supra pre-open set.

Theorem 2.11.

(i) Arbitrary intersection of intuitionistic fuzzy supra pre-closed sets is always an intuitionistic fuzzy supra pre-closed.

(ii) Finite union of intuitionistic fuzzy supra pre-closed sets may fail to be an intuitionistic fuzzy supra pre-closed.

Proof.

(i) This proof immediately from Theorem 2.10

(ii) Let $X = \{a, b\}$, $A = \{x, <0.2, 0.3>, <0.2, 0.4>\}$, $B = \{x, <0.5, 0.4>, <0.4, 0.5>\}$ and $\tau = \{0_{\sim}, 1_{\sim}, A, B, A \cup B\}$. Hence A and B are intuitionistic fuzzy supra pre-closed but $A \cup B$ is not an intuitionistic fuzzy supra pre-closed set.

Definition 2.12. The intuitionistic fuzzy supra pre-closure of a set A, denoted by s-precl(A), is the intersection of an intuitionistic fuzzy supra pre-closed sets including A. The intuitionistic fuzzy supra pre-interior of a set A, denoted by s-pre-int(A), is the union of intuitionistic fuzzy supra pre-open sets included in A.

Remark 2.13. It is clear that s-pre-int(A) is an intuitionistic fuzzy supra pre-open set and s-pre-cl(A) is an intuitionistic fuzzy supra pre-closed set.

Theorem 2.14.

(i) A \square s-pre-cl(A); and A = s-pre-cl(A) iff A is an intuitionistic fuzzy supra pre-closed set;

(ii) s-pre-int(A) \Box A; and s-pre-int(A) = A iff A is an intuitionistic fuzzy suprapre-open set;

(iii) X -s-pre-int(A) = s-pre-cl(X -A);
(iv) X -s-pre-cl(A) = s-pre-int(X-A).

Proof. Obvious.

Theorem 2.15.

(i) s-pre-int(A) \lor s-pre-int(B) \Box s-pre-int(A \lor B); (i) s-pre-cl(A \cap B) \Box s-pre-cl(A) \cap s-pre-cl(B).

Proof. Obvious.

The inclusions in (i) and (ii) in Theorem 2.15 can not replaced by equalities by let $X = \{a, b\}, A = \{x, <0.3, 0.4 >, <0.2, 0.5 >\}, B = \{x, <0.3, 0.4 >, <0.4, 0.4 >\}$ and $\tau = \{0_{\sim}, 1_{\sim}, A, B, A \cup B\}$, where s-pre-int(A) = $\{x, <0.2, 0.5 >, <0.3, 0.4 >\}$, s-pre- int(B) = $\{x, <0.5, 0.4 >, <0.4, 0.5 >\}$ and s-pre-int(A $\cup B$) = $\{x, <0.5, 0.5 >, <0.3, 0.4 >\}$. Then s-pre-cl(A) \cap s-pre-cl(B) = $\{x, <0.3, 0.4 >, <0.2, 0.5 >\}$ and s-pre-cl(A)=s-pre- cl(B) = 1_{\sim} . Proposition 2.16.

(i) The intersection of an intuitionistic fuzzy supra open set and an intuitionistic fuzzy supra pre-open set is an intuitionistic fuzzy supra pre-open set

(ii) The intersection of an intuitionistic fuzzy supra α -open set and an intu- itionistic fuzzy supra pre-open set is an intuitionistic fuzzy supra pre-open set

3. Intuitionistic suzzy supra pre-continuous mappings.

In this section, we introduce a new type of continuous mapings called a intu- itionistic

fuzzy supra pre-continuous mappings and obtain some of their properties and characterizations.

Definition 3.1. Let (X, τ) and (Y, σ) be the two intuitionistic fuzzy topolog- ical sets and μ be an associated supra topology with τ . A map $f : (X, \tau) \to (Y, \sigma)$ is called an intuitionistic fuzzy supra pre-continuous mapping if the inverse image of each open set in Y is an intuitionistic fuzzy supra pre-open set in X.

Theorem 3.2. Every intuitionistic fuzzy supra continuous map is an intu- itionistic fuzzy supra pre-continuous map .

Proof. Let $f: (X, \tau) \rightarrow (Y, \sigma)$ is called intuitionistic fuzzy continuous map

and A is an IFsOS in Y. Then $f^{-1}(A)$ is an IFsOS in X. Since μ is associated with τ , then $\tau \Box \mu$. Therefore, $f^{-1}(A)$ is an IFsOS in X which is an IFsPOS set in X. Hence f is an intuitionistic fuzzy supra pre-continuous map.

The converse of the above theorem is not true as shown in the following exam ple.

Example 3.3. Let $X = \{a, b\}, Y = \{u, v\}$ and $A = \{\langle 0.5, 0.2 \rangle, \langle 0.3, 0.4 \rangle\},\$

 $B = \{<0.3, 0.4>, <0.6, 0.5>\}, C = \{<0.5, 0.4>, <0.3, 0.4>\}, D = \{<0.3, 0.4>, <0.6, 0.5>\}. Then$ $\tau = \{0_{\sim}, 1_{\sim}, A, B, A \cup B\}$ be an intuitionistic fuzzy supra topology on X. Then the intuitionistic fuzzy supra topology σ on Y is defined as follows: $\sigma = \{0_{\sim}, 1_{\sim}, C, D, C \cup D\}.$ Define a mapping $f(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = u and f(b) = v. The inverse image of the IFsOS in Y is not an IFsOS in X but it is an IFsPOS. Then f is an intuitionistic fuzzy supra continuous map but not be an intuitionistic fuzzy supra continuous map.

Theorem 3.4. Every intuitionistic fuzzy supra α -continuous map is an intu- itionistic fuzzy supra pre-continuous map .

Proof. Let $f: (X, \tau) \rightarrow (Y, \sigma)$ is called intuitionistic fuzzy supra α -continuous

map and A is an IFsOS in Y. Then $f^{-1}(A)$ is an IFs α OS in X. Since μ is as-sociated with τ , then $\tau \Box \mu$. Therefore, $f^{-1}(A)$ is an IFs α OS in X which is an IFsPOS in X. Hence f is an intuitionistic fuzzy supra pre-continuous map.

The converse of the above theorm is not true as shown in the following exam- ple.

Example 3.5. Let $X = \{a, b\}, Y = \{u, v\}$ and $A = \{<0.5, 0.2>, <0.3, 0.4>\},\$

B = {<0.3, 0.4>, <0.6, 0.5>}, C = {<0.5, 0.4>, <0.3, 0.4>}, D = {<0.3, 0.4>, <0.6, 0.5>}. Then $\tau = \{0_{\sim}, 1_{\sim}, A, B, A \cup B\}$ be an intuitionistic fuzzy supra topology on X. Then the intuitionistic fuzzy supra topology σ on Y is defined as follows: $\sigma = \{0_{\sim}, 1_{\sim}, C, D, C \cup D\}$. Define a mapping $f(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = u and f(b) = v. The inverse image of IFsOS in Y is not an IFsaOS in X but it is an IFsPOS. Then f is an intuitionistic fuzzy supra pre-continuous map but not be an intuitionistic fuzzy supra α -continuous map.

Theorem 3.6. Every intuitionistic fuzzy supra pre-continuous map is an in-tuitionistic fuzzy supra b-continuous map .

Proof. Let $\mathbf{f} : (X, \tau) \to (Y, \sigma)$ is called intuitionistic fuzzy supra pre-continuous map and A is an IFsOS in Y. Then $\mathbf{f}^{-1}(A)$ is an IFsPOS in X. Since μ is associated with τ , then $\tau \Box \mu$. Therefore, $\mathbf{f}^{-1}(A)$ is an IFsPOS in X which is an IFsbOS in X. Hence \mathbf{f} is an intuitionistic fuzzy supra b-continuous map.

The converse of the above theorm is not true as shown in the following exam-ple.

Example 3.7. Let $X = \{a, b\}$, $Y = \{u, v\}$ and $A = \{<0.5, 0.2>, <0.3, 0.4>\}$, $B = \{<0.3, 0.4>, <0.6, 0.5>\}$, $C = \{<0.5, 0.4>, <0.3, 0.4>\}$, $D = \{<0.3, 0.4>, <0.6, 0.5>\}$. Then $\tau = \{0_{\sim}, 1_{\sim}, A, B, A \cup B\}$ be an intuitionistic fuzzy supra topology on X. Then the intuitionistic fuzzy supra topology σ on Y is defined as follows: $\sigma = \{0_{\sim}, 1_{\sim}, C, D, C \cup D\}$. Then $\tau = \{0_{\Box}, 1_{\Box}, A, B, A \cup B\}$ be an intuitionistic fuzzy supra topology on X. Then the intuitionistic fuzzy supra topology σ on Y is defined as follows: $\sigma = \{0_{\sim}, 1_{\sim}, C, D, C \cup D\}$. Define a mapping $f(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = u and f(b) = v. The inverse image of IFsOS in Y is not an IFsPOS in X but it is an IFsbOS. Then f is an intuitionistic fuzzy supra b-continuous map but not be an intuitionistic fuzzy supra precontinuous map.

Theorem 3.8. Every intuitionistic fuzzy supra pre-continuous map is an in-tuitionistic fuzzy supra β -continuous map .

Proof. Let $f : (X, \tau) \to (Y, \sigma)$ is called intuitionistic fuzzy supra precontinuous map and A is an IFsOS in Y. Then $f^{-1}(A)$ is an IFsPOS in X. Since μ is associated with τ , then $\tau \Box \mu$. Therefore, $f^{-1}(A)$ is an IFsPOS in X which is an IFs β OS in X. Hence f is an intuitionistic fuzzy supra β -continuous map.

The converse of the above theorem is not true as shown in the following exam ple. Example 3.9. Let $X = \{a, b\}$, $Y = \{u, v\}$ and $A = \{<0.5, 0.2>, <0.3, 0.4>\}$, $B = \{<0.3, 0.4>, <0.6, 0.5>\}$, $C = \{<0.5, 0.2>, <0.3, 0.4>\}$, $D = \{<0.3, 0.4>, <0.6, 0.5>\}$. Then $\tau = \{0_{\sim}, 1_{\sim}, A, B, A \cup B\}$ be an intuitionistic fuzzy supra topology on X. Then the intuitionistic fuzzy supra topology σ on Y is defined as follows: $\sigma = \{0_{\sim}, 1_{\sim}, C, D, C \cup D\}$. Define a mapping $f(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = u and f(b) = v. The inverse image of IFsOS in Y is not an IFsPOS in X but it is an IFs β OS. Then f is an intuitionistic fuzzy supra b-continuous map but not be an intuitionistic fuzzy supra pre-continuous map.

IFs continuous \rightarrow IFs α continuous

& ↓

IFsb continuous \leftarrow IFsP continuous \rightarrow IFs β continuous

Theorem 3.10. Let (X, τ) and (Y, σ) be the two topological spaces and μ be an associated intuitionistic fuzzy supra topology with τ . Let f be a map from X into Y. Then the following are equivalent

(i) **f** is an intuitionistic fuzzy supra pre-continuous map.

(ii) The inverse image of an intuitionistic fuzzy supra closed sets in Y is an intuitionistic fuzzy supra pre-closed set in X;

- (iii) s-pre-cl($f^{-1}(A)$) $\square f^{-1}(cl(A))$ for every set A inY;
- (iv) $f(s-pre-cl(A)) \square cl(f(A))$ for every set A in X;
- (v) $f^{-1}(int(B)) \square$ s-pre-int $(f^{-1}(B))$ for every set B in Y.

Proof. (i) \Rightarrow (ii): Let A be a closed set in Y, then Y - A is open set in Y. Then $f^{-1}(Y - A) = X - f^{-1}(A)$ is s-pre-open set in X. It follows that $f^{-1}(A)$ is a supra pre-closed subset of X.

(ii) \Rightarrow (iii): Let A be any subset of Y. Since cl(A) is closed in Y, then it follows that f $^{-1}$ (cl(A)) is an intuitionistic fuzzy supra pre-closed set in X. Therefore s-pre-cl(f $^{-1}$ (A)) \square (f⁻¹(cl(A))) = (f⁻¹(cl(A)).

(iii) \Rightarrow (iv): Let A be any subset of X. By (iii) we have $f^{-1}(cl(f(A))) \square$ s-pre-cl $(f^{-1}(f(A))) \square$ s-pre-cl(A) and hence $f(s-pre-cl(A)) \square cl(f(A))$.

(iv) \Rightarrow (v): Let B be any subset of Y. By (4) we have $\mathbf{f}^{-1}(s\operatorname{-pre-cl}(X - \mathbf{f}^{-1}(B))) \square \operatorname{cl}(\mathbf{f}(X - \mathbf{f}^{-1}(B)))$ and $\mathbf{f}(X - \operatorname{s-pre-int}(\mathbf{f}^{-1}(B))) \square \operatorname{cl}(Y - B) = Y - \operatorname{int}(B)$. There- fore we have $X - \operatorname{s-pre-int}(\mathbf{f}^{-1}(B)) \square \mathbf{f}^{-1}(Y - \operatorname{int}(B))$ and hence $\mathbf{f}^{-1}(\operatorname{int}(B)) \square \operatorname{s-pre-int}(\mathbf{f}^{-1}(B))$.

(v) ⇒ (i): Let B be a open set in Y and $f^{-1}(int(B)) \square$ s-pre-int($f^{-1}(B)$), hence $f^{-1}(B)$ □ s-pre-int($f^{-1}(B)$). Then $f^{-1}(B) =$ s-pre-int($f^{-1}(B)$). But, s-pre- int($f^{-1}(B)$) □ f $f^{-1}(B)$. Hence $f^{-1}(B) =$ s-pre-int($f^{-1}(B)$). Therefore $f^{-1}(B)$ is an intuitionistic fuzzy supra pre-open set in Y.

Theorem 3.11. If a map $f:(X,\tau)\to (Y,\sigma)$ is a s-pre-continuous and

 $g: (Y, \sigma) \rightarrow (Z, \eta)$ is continuous ,then $(g \circ f)$ is s-pre-continuous.

Proof. Obvious.

Theorem 3.12. Let $f : (X, \tau) \to (Y, \sigma)$ be an intuitionistic fuzzy s-pre-continuous map if one of the following holds:

(i) $f^{-1}(s\text{-pre-int}(B)) \square int(f^{-1}(B))$ for every set B in Y, (ii) $cl(f^{-1}(A)) \square f^{-1}(s\text{-pre-cl}(B))$ for every set B in Y,

(iii) $f(cl(A)) \square$ s-pre-cl(f(B)) for every A in X.

Proof. Let B be any open set of Y, if the condition (i) is satisfied, then $f^{-1}(s-\text{pre-int}(B))$ $\Box \text{ int}(f^{-1}(B))$. We get, $f^{-1}(B) \Box \text{ int}(f^{-1}(B))$. Therefore

 $f^{-1}(B)$ is an intuitionistic fuzzy open set. Every intuitionistic fuzzy open set is intuitionistic fuzzy supra pre-open set. Hence f is an intuitionistic fuzzy s-pre-continuous. If condition (ii) is satisfied, then we can easily prove that f is an intuitionistic fuzzy supra pre-continuous. Let condition (iii) is satisfied and B be any open set in Y. Then $f^{-1}(B)$ is a set in X and then we can easily prove that f is an intuitionistic fuzzy s-pre-continuous function. If condition (iii) is satisfied, and B is any open set of Y. Then $f^{-1}(B)$ is a set in X and $f(cl(f^{-1}(B))) \square$ s-pre-cl($f(f^{-1}(B))$). This implies $f(cl(f^{-1}(B))) \square$ s-pre-cl(B). This is nothing but condition (ii). Hence f is an intuitionistic fuzzy s-pre-continuous.

4. Intuitionistic Fuzzy supra pre-open maps and supra pre-closed maps.

Definition 4.1. A map $f : X \rightarrow Y$ is called intuitionistic fuzzy supra pre-open (res.intuitionistic fuzzy supra pre-closed) if the image of each open (resp.closed) set in X, is intuitionistic fuzzy supra pre-open(resp.intuitionistic fuzzy supra pre-closed) in Y.

Theorem 4.2. A map $f : X \rightarrow Y$ is called an intuitionistic fuzzy supra pre-open if and only if $f(int(A)) \square$ s-pre-int(A) for every set A in X.

Proof. Suppose that f is an intuitionistic fuzzy supra pre-open map. Since $int(A) \square f$ (A). By hypothesis f(int(A)) is an intuitionistic fuzzy supra pre-open set and s-pre-int(f (A)) is the largest intuitionistic fuzzy supra pre-open set contained in f(A), then f (int(A)) \square s-pre-int(f(A))

Conversely, Let A be a open set in X. Then $f(int(A)) \square$ s-pre-int(f(A)). Since

int(A) = A, then $f(A) \square$ s-pre-int(f(A)). Therefore f(A) is an intuitionistic fuzzy supra pre-open set in Y and f is an intuitionistic fuzzy supra pre-open.

Theorem 4.3. A map $f : X \to Y$ is called an intuitionistic fuzzy suprapre-closed if and only if $f(cl(A)) \square$ s-pre-cl(A) for every set A in X.

Proof. Suppose that f is an intuitionistic fuzzy supra pre-closed map. Since for each set A in X, cl(A) is closed set in X, then f(cl(A)) is an intuitionis-tic fuzzy supra pre-closed set in Y. Also, since $f(A) \square f(cl(A))$, then s-pre- $cl(f(A)) \square f(cl(A))$.

Conversely, Let A be a closed set in X. Since s-pre-cl(f(A)) is the smallest intuitionistic fuzzy supra pre-closed set containing f(A), then $f(A) \square$ s-pre-cl(f(A)) \square f(cl(A)) = f(A). Thus f(A) = s-pre-cl(f(A)). Hence f(A) is an intuitionistic fuzzy supra pre-closed set in Y. Therefore f is a intuitionistic fuzzy supra pre-closed map.

Theorem 4.4. Let $f : X \to Y$ and $g : Y \to Z$ be two maps.

(i) If $g \circ f$ is an intuitionistic fuzzy supra pre-open and f is continuous surjective, then g is an intuitionistic fuzzy supra pre-open.

(ii) If $g \circ f$ is open and g is an intuitionistic fuzzy supra precontinuous injective, then f is an intuitionistic fuzzy supra pre-open.

(iii) **f** is an intuitionistic fuzzy supra pre-closed map;

Proof. (i)= (ii). Suppose B is a closed set in X. Then X – B is an open set in an open set in X. By (1), f(X - B) is an intuitionistic fuzzy supra pre-open set in X. Since f is bijective, then f(X - B) = Y - f(B). Hence f(B) is an intuitionistic fuzzy supra pre-closed set in Y. Therefore f is an intuitionistic fuzzy supra pre-closed map.

(ii)= (iii). Let f is an intuitionistic fuzzy supra pre-closed map and B be closed set X. Since f is bijective, then $(f^{-1})^{-1}(B)=f(B)$ is an intuitionistic fuzzy supra pre-closed set in Y. By Theorem 3.7 f is an intuitionistic fuzzy supra pre-continuous map.

(iii)= (i). Let A be an open set in X. Since f^{-1} is an intuitionistic fuzzy supra precontinuous map, then $(f^{-1})^{-1}(A) = f(A)$ is an intuitionistic fuzzy supra pre- open set in Y. Hence f is an intuitionistic fuzzy supra pre-open.

REFERENCES

- [1] M.E. Abd El-Monsef and A.E.Ramadan, "On fuzzy supra topological spaces", Indian J.Pure and Appl, vol. 4, 18(1987), 322-329.
- [2] K.T. Atanassov, intuitionstic fuzzy sets, "Fuzzy sets and systems", 209 1986,87-96.
- [3] D. Coker, "An introduction to intuitionstic fuzzy topological spaces", Fuzzy sets and systems, 88(1997), 81-89.

- [4] R. Devi, S. Sampathkumar and M. Caldas, "On supra α- open sets and sα continuous functions General Mathematics", vol. 16, 2 (2008), 77-84
- [5] N. Levine, "Semi-open sets and semi-continuity in topological spaces", Amer.Math. Monthly, 70(1963), 36 41.
- [6] M. Parimala, C.Indirani, "Intuitionistic fuzzy β -supra open sets and Intu- itionistic fuzzy β -supra continuous mapping", Notes on intuitionistic fuzzy sets, 20(2014), 6-12.
- [7] M. Parimala, Jafari Syaeid, Intuitionistic fuzzy α-supra continuous maps,"Annals of fuzzy mathematics and informatics", vol.9, 5(2015), 745-751.
- [8] A.S. Mashhour, A. A. Allam, F. S. Mahmoud and F. H. Khedr, "On supra topological spaces", Indian J. Pure and Appl. vol. 4, 14(1983), 502-510.
- [9] O.R. Sayed, "Supra pre-open sets and Supra pre-continuity on topological spaces", scientific studies and research series mathematics and informatics, 20(2010), 79 -88.
- [10] N. Turnal, "On intuitionistic Fuzzy Supra topological Spaces", International Conference on Modeling and Simulation, Spain, vol.2, (1999) 69-77.
- [11] N. Turnal, "An over view of intuitionstic fuzzy Supra topological spaces". Hacettepe Journal of Mathematics and Statistics, vol.32 (2003), 17-26.
- [12] Won Keun Min, "On fuzzy s- continuous functions", Kangweon Kyungki, vol.1, 4(1996), 77-82.
- [13] Zadeh, L. A. "Fuzzy sets", Information and Control, 8(1965), 338-353.