International Journal of Latest Trends in Engineering and Technology (IJLTET)

Analysis of Malicious Apps in Android OS

Pooja Singh,
Dept. of Computer Science,
AMET University, Chennai, Tamilnadu,India

Dr. Santosh Singh
HOD, BSc IT & MSc IT Department,
Thakur College of Science & Commerce, Mumbai, India

Pankaj Tiwari
Dept. of Computer Science,
JJT University, Churu, Rajasthan, India

Abstract—Mobile operating system and mobile devices areplaying an important role in our day to day to life. Some
latest examples of Mobile operating system such as iOS and Android have become a market leader. However the
increasing use of theses mobile operating system has leads to several security issues also. There have been several
approaches proposed on basis of permissions and malware detection, and source code analysis of android apps. However
helping the users to know the security implications of mobile application is still ongoing research, in this paper we
propose the method to analyze decompiled source code and permission of android apps to show the security threats of
android apps and user information stored in mobile devices

Keywords— Malware detection, Permissions, Android apps.

I. INTRODUCTION

It has been constant increase in the use & development of the Android apps for business as well as personal use. The
application run on mobile devices requires much permission such as contacts, emails, location and many more.
These devices also have monetary risk such as phone calls, messages and mobile data usage can cost money for its
usage. As we also know the increase in use of digital wallet applications such as paytm, freecharge etc. These apps
require confidential information such as bank details. Due to growing use of theses apps it makes these mobile
devices as an attractive target for malicious programs. Researchers have developed and proposed several methods to
identify malicious behavior of application on their permission requirement. Some applications demands particular
permission [1] but to complete that demand the applications also uses some permissions which are not listed by
applications. However, permissions only provide a high-level and inaccurate observation of the performance of an
application. An application may request permission without actually using the permission. One permission can
control multiple other permissions via access control. For example allowing access to READ PHONE STATE will
also use device IMEI via getDeviceld() which can be misused. The current caller is available via getCallerInfo(...)
which has privacy implications, but this permission also grants access to more commonly used functions and intents
such as the “android.intent.action. PHONE STATE” intent to detect changes in the network connection type and
similar changes to phone state. On other side we know that applications can be well studied by their decompiled
source code which helps in detail analysis of applications. As Android system provide rich set of API which can be
easily analyzed by decompiled source code. Therefore we saw that using decompiled source code the behavior of
applications can provide more detail information about applications than the set of permission the applications
actually uses.

Special Issue RICSIT-2016 56 ISSN: 2278-621X

International Journal of Latest Trends in Engineering and Technology (IJLTET)

| Applications

r .

Applications Framework

. J

Libraries Android Runtime
SQLit GL
Sl e Core Libraries
Surface Media . :
Manager Framework Dalvik Virtual
Machine
Webkit libc

E Linux Kemel I

Fig 1. Android Architecture

The organization of the paper is as follows: Section 2 is concerning the Android fundamental framework and the
security issues. Section 3 is the security analysis mechanism we proposed for android applications. Methodology is
shown in Section 4. Section 5 concludes the whole paper counting the contributions.

IIL. ANDROID SECURITY ISSUES

2.1 Android basic architecture

Android most popularly known mobile operating system based on Linux kernel and it was developed by Google [2].
Android operating system is available in layered architecture, which includes the bottom layer as Linux Kernel
layer, middle layer and top layer as application layer which provides different services to for the layer above. The
main function of mobile phone are provided by middle layer, which is mostly implemented in java or C/C++.All the
applications running on android operating system are written in java &after compilation it is converted into .class
files which are again converted into .dex file by DX tool. Every Android applications has separate instance which
runs in DVM [3] (Dalvik Virtual Machine) and each applications are assigned with unique identification number.
Fig 1. will show the layered architecture of Android operating system. Android operating system is made of several
components out of which DVM (Dalvik Virtual Machine) is important component of Android platform. It support
all java applications which are converted into .dex format which Dalvik executable format which can be run on
DVM .1t is available in compressed format so that memory and processor speedlimitation can be overcome .DVM is
also responsible for process separation and thread management..

2.2 Android security Model

Android operating system Security is same as Linux operating system. Android provides different mechanism to
protect user’s information. The main component of Android security is sandboxing mechanism, applications
signature & permission model. The Android permission model restricts applications to access users confidential
information such as phone number contacts, location, resources and Internet and GPS. If any application requires
access to any resource it has to acquire the corresponding permissions. Android permission model is list of stated
permission which is shown before installing the applications. However this mechanism seems to be simple but has
several security issues that cannot protect user’s information from misuse. Enck proposed Kirin [4], a detection tool
to improve existing Android permission model. If any applications require permission it must be given before
installation and cannot be modified after installation. The Android permission model has certain security threat also
being user of mobile phone and application those who are not aware and least bothered with security mechanism
they help the malware attacker to make misuse of these set of permission. Application can use combination of
permission for stealing user’s private and confidential information. To show the security implication of android apps

Special Issue RICSIT-2016 57 ISSN: 2278-621X

International Journal of Latest Trends in Engineering and Technology (IJLTET)

this paper proposes a malicious behavior analysis mechanism by combining static and dynamic analysis of android
apps.

1. MALICUOIS ANALYSIS FRAMEWORK

There are basically two main approaches for malicious malware analysis for android app which includes static and
dynamic. Static analysis is type of source code analysis of android apps. This is best way to know the source code
and understand the behavior of application just by analyzing the programs source code. As it is totally based on the
programs source code if we not able to generate the target code by reverse engineering or decompilation then it’s
very difficult ti analyze the source code. Dynamic analysis is keeping track on applications run time behavior when
program is running. This method gives more accurate results compared to static. However dynamic method too has
limitations in terms of covering the entire code. In this paper we present a combination of static and dynamic
analysis that helps to overcome the limitations of each other. Fig 2. Will show the entire steps of execution.

Static -
Analysis Dynamic
! Analysis

Android-Manifest] Monitoring] DDMS logs
xml Logs
T

Smali File

£

I '__ir__
[Permission]

Moc]iule [Manual Analysis]

Match
security
policies ?

Fig 2. Android Malicious Behavior Analysis Framework

Prior to analyzing the android apps, we need to analyze android application package file by reverse engineering
through static analysis to produce the configuration file i.e. smali code. The next configuration file is
AndroidManifest.xml which is used for permission related purpose and the smali files is later on used for dynamic
analysis. For doing this we selected the suspicious app which has more chances to leak user’s private information. If
program is found as suspicious then it taken to next stage of dynamic monitoring. In dynamic monitoring module the
smali code and some tracking code is embedded and all these are repackaged and resign the .apk file. When apk is
running we can dynamically view the behavior of apps privacy leakage and can notify the users about this malicious
behavior. Theses alert are available in form of logs which can be further used for detailed analysis. After this we are
going to discuss about three important component of this framework: apk de-compilation, permission module &
dynamic module.

3.1 Decompilation

Before starting with permission and dynamic module we have extract the apps AndroidManifest.xml file and the
equivalent smali [5] file for the given apk. The android apps are embed in into executable form with suffix .apk. It is
same as .exe file available in our computer. This a.pk file after installation can be executed in any Android OS .apk
file is compressed file which can be extracted with any .zip utility. After extracting the .zip file we can get resources,

Special Issue RICSIT-2016 58 ISSN: 2278-621X

International Journal of Latest Trends in Engineering and Technology (IJLTET)

permissions, the intermediate representation file called as smali file. In this paper we have used apktool [6] for
decompilation.The File structure of any .apk file after extraction is shown below.

Table 1. File structure of .APK file

Directory/File Description

Application’s resource file including
Res
pictures, sound video etc.

Smali Dalvik register byte code files of apk

The configuration file of apk including the
AndroidManifest.xml
package name, permission, referenced

Libraries and other
information

Apktool.yml The configuration file of Apktool

3.2 Permission Module

There is some permission that may not create security risk but if they are combined with other set of permission can
implement security risk. For example, application can demand for permission such as read phone state and sending
messages it may cause security implication such as sending phones number or IMEI number out. In permission
module we are implementing policies to find out whether an application uses risk permission in combination with
other permission. In android there exist four different levels of permissions such as Normal, Dangerous, Signature,
and SignatureOrSystem

Normal: It is least risk permission for any android app andit is granted automatically, without asking users.
Dangerous: It is high risk permission which can take userssensitive data. Dangerous permission is granted only by
users of the application.

Signature; IT permission that is given by system only if theapplication is signed with same certificate as it declared
in applications permission list.

SignatureOrSystem: It is granted only to those applicationsthat are in Android System image.

Out of these four permission types the main focus is on Dangerous permission as it allows accessing user’s sensitive
information. However there are two categories in which information can be leaked. First one is reading the privacy
information such as android.permission.READ PHONE STATE, which allows reading SIM card number, phone
number, IMEI number etc. The Second one is sending private information out. In this study we focus on two ways
of leakage one is SMS and the other one is INERNET i.e. Android.permission.SEND SMS and
android.permission.INTERNET. Here we have used the security policies as combination of the two permissions i.e.
READ permission and SEND permission. After decompilation we can get applications permission set from
AndroidManifest.xml. Here to explain the permission module the permission matrix is prepared as combination of
row and column where represents sending permission and column represents accessing the private data in this
matrix we can explain how two permission can combine to send private information. Permission Model is explained
in Table 2.In static analysis we used decompilation to extract the AndroidManifest.xml and with the help of this file
we categorized the permission into read and send. We have assumed that value 1 means the apps is suspicious and at
high risk. First row 1 indicates the app can send location information as SMS, second row “0” means that
application does not send any information through calendar app neither send as SMS nor Over INTERNET. So there
are no risk of this app as it does not combine with (READ CALENDER, SEND SMS) and (READ CALENDER,
SEND INTERNET).

Special Issue RICSIT-2016 59 ISSN: 2278-621X

International Journal of Latest Trends in Engineering and Technology (IJLTET)

Table 2. Permission Model

Read Permission Send Permission

SEND_SMS [INTERNET

ACCESS FINE

LOCATION 1 0
READ CALENDER 0 0
READ PHONE STATE |0 1

READ OWNER DATA |- -

READ SMS - -

3.3 Dynamic Module

In dynamic module we monitor the call messages f sensitive APIs in a.pk file. To do these we have used monitoring
code which will be inserted into extracted source of android apps. The android app. is written in java after
compilation it is converted into java bytecode. class file and it is executed by JVM(java Virtual Machine)and then it
is converted in dalvik bytecode which is executed by DVM(Dalvik Virtual Machine).To monitor the suspicious code
we have to again convert this dalvik byte code into java bytecode and rewrite the java code and finally convert this
rewritten java byteccode into dalvik byte code. Sometime this approaches not work .to do this several tools are used
such as dextojar[5] and ded[7] which convert dalvik byte code back to java bytecode. However this not error free
conversion some information while converting into dalvik bytecode is missed. Sometimes thisconversion leads to
invalid java byte code or invalid dalvik bytecode. There are assembler and disassemble known as smali and
backsmali for the .dex file. i.e. classess.dex file. Smali code is intermediate e representation of dalvik bytecode.
Smali file consist all related information about the .dex file i.e. (debug information, thread information etc.).As we
have found that conversion from dalvik bytecode to smalicode is lossless so rather than JVM and DVM differences
we have directly written into dalvik bytecode and insert the monitoring ode in smali code. The process of dynamic
module is shown in Fig 3.

Smali files

~~——————" :’::?Embeded Monitoring

Smah_ ‘-:Ode of ; smali code
sensitive AP| i
Mg — y

Smali files
/‘ﬁ

W

code of API call : Apk compilation

information
' Runninglogs and
monitoring repirts

Special Issue RICSIT-2016 60 ISSN: 2278-621X

LIBRARIES

International Journal of Latest Trends in Engineering and Technology (IJLTET)

Fig 3. Dynamic Module Process

In Fig 3, we can obtain Smali files from the static decompiling. Then locate the concrete position of the sensitive
API, and embed monitoring Smali bytecode to each different sensitive API. After that we use apktool to repackage
the modified Smali bytecode to create a new APK and use the signature tool to re-sign it. Running the new APK on
Android emulator, we are using log file to check the execution logs. It can generate a log on SD card which records
the detailed call information of those sensitive APIs.

1) Smali bytecode [8]. Smali code is an intermediate code for dalvik bytecode.Smali is register based language.
The smali language syntax is indicated in Table 3.
Ljava/lang/String is equivalent to java.lang.String.Arrays can be written as int [| methods can be written as
Lapackage/name/objectname:-
>MethodName(III)Z which means Method name is name iof the method (III)Z is the prototype of the
method.III indicates number of parameters and Z is return type of method.

2) Smali bytecode libraries for sensitive API.As smali bytecode keep sensitive API and their relevant smali
bytecode. The aim for this library is to identify sensitive API in smali code after decompilation. In our study we
have used some sensitive API and their description.

3) Monitoring bytecode: The monitoring bytecode library is used to store information about sensitive APIs call

information when .apk is executing. Every API requires different ways of monitoring.

Table 3. Smali bytecode library for sensitive API

Class Name Function Name Description Smali bytecode
SmsManager;
Android.telephonysmsmanager sendTextmessag Send sendTextMessage[10]
E messages
android.location.LocationManager | getLastKnownLocation | GetLocation LocationManager.getLast
KnownLocation
]] Get ID,IMEI of et- Deviceld()Ljava/
|Android. Telephony getDeviceld() phone ang/String
Get SIMserial
android.location. getSimSerialNu Number TelephonyMana ger get-
mber() SimSerialNumber
[_android/telephony/Telephon
android.te lephony. Telephon) y Managerget-
yManager octLine] Numbe Get phone [ine 1 Number()
1() Number

Special Issue RICSIT-2016 61 ISSN: 2278-621X

International Journal of Latest Trends in Engineering and Technology (IJLTET)

IV. EXPERIMENT

Before experiment, some necessary tools such as Eclipse, jdk6, jre, android sdk other tools will be installed. apk
decompiler and permission module were implemented in java. apk static compilation module uses apktool.
Permission module mainly focuses security policies, extracting permission features from AndroidManifest.xml.
The role of dynamic module is to scan and analyzing the smali code generated by static decompiler. Insert
monitoring code in to smali, repackage and resign the apps smali code and then generate new .apk code for the
same application. Then this apk is tested on Android emulator, while doing this generates the log file to show what
has happened

4.1 Analysis of Android Markerts API

To show the problems faced by android users for information leakage we have selected some popular apps from
known online android markets for our experiment. Some popular online android markets which we have used in
our study are Google playstore, Aptoide,Amazon Appstore,Androlib. APK Samples collected from these popular
app markets and these app have more than half android users. In this experiment we have focused mainly on users
information such as LOCATION, SMS, CONATCTS, PHONE NUMBER, IMEI .Leakage meanly have sending
message and INTERNET. We have used some random numbers of apps and collected permission detail of all those
apps and found 26% apps have security implications of sending users private information.IN this showing users
private information is considered as suspicious activity. After this we analyze the permission requested by .apk of
applications. According to the security module proposed in the above section we count the number of apps
equivalent to each type of privacy information. From the analysis, we observed that most security problem was
with information leakage of IMEI number. As IMEI can find out phone type and device parameters and it can
easily provide accurate users information for developer of apps and advertisers. The phone number, contacts &
location theses information are used in illegal way .It causes huge loss to users.

Table 4. Analysis of suspicious Apps

Market App Suspicious Ratio%
Number number
shouji:com:cn 5 2 40
appchina:com 5 2 40
market:goapk:com 5 1 20
eoemarket:com 5 1 20
Total 20 8 40

4.2 Sensitive APl monitoring

To check the efficiency and practicability of dynamic module we checked on Android emulator in Windows 7
operating system. The monitoring result generated after testing is a text file and the output is stored in SD card of
Android emulator. To find different sensitive API we have to find out the set of registers the return value and then
use a call to various log modules to find out record when applications are running. For finding out the send text
message api the send text message smali code is shown in Fig 5. .From figure we can see that the send text
message function has five parameters out of which only two parameter are important i.e. Receiver number and
message. From smali code we can see that register vl and v3 stores these two parameter (receiver number,
message) and remaining three parameters are null. So we need to pass only vl and v3 to log function to record the
information related to message information when applications are executing .After inserting the monitoring code
into smali file we used apktool to repack the modified smali file. The above experiments show that the dynamic
module is successfully tested on smali file of apk file. The log file says detail information about sensitive api. After
dynamic module once it is confirmed that app is suspicious we can use advanced tool such as DDMS to analyze

Special Issue RICSIT-2016 62 ISSN: 2278-621X

International Journal of Latest Trends in Engineering and Technology (IJLTET)

more deeply.

iget-objectvi, pO,
Lcom/sexample/sendsms_example/SendsSnN5S_ExampleftaindActivi
ty;

-=phoneNumber:Ljava/lang/String;

iget-objectv3, p0,
Lcom/sexample/sendsms_example/SendSNS_ExampiefdginActivi
ty;

-=SNISContext:Ligva/lang/String;

move-object v, v2

move-objectv5s, v2

invoke-virtual/range {vO .. v5},
Landroid/telephony/Smshanager;
>sendTextMessage(Liava/lang/String; Liava/s/lang/String:Liava/la
ng/

String;Landroid/app/Pendingintent;Landroid / cpp/ Pending/ntent
v

Fig 5. Smali Code for Sendtextmessage

THERE IS EXAMPLE OF .APK FILE WHICH MALWARE APP SHOWSSUSPICIOUS ACTIVITY. THIS
IS TESTED BY APKSCAN MALWAREANALYSIS TOOL. WHICH GIVES SOME INFORMATION ABOUT

THIS APPSMISUSES THE PRIVATE DATA WITHOUT THE CONSENT OF USER.
NVISO ApkScan malware analysis report May 12, 2016 SuspiciousActivity Detected [9]

General information

File name Flashlight.apk

Other known file names MNone
Manually uploaded by

Origin anonymous user [2016-
02-2017:28:39]
dadoddb623ed1f68ded

M hash beD434454cebe
dsdb44leldc450a8307
746915bd92577el1dff55

A6 hash 35baf282elle7edabel?
27eab

File size 1628.21 KB

Worker NVISO_API_KALI 01

Fig 6. Basic Information about app

Special Issue RICSIT-2016 63

ISSN: 2278-621X

International Journal of Latest Trends in Engineering and Technology (IJLTET)

Permissions
Allows applications to
ACCESS_NETWORK_STATE access information about
networks

Required to be able to
access the camera device.

Allows access to the
flashlight

Allows applications to open
network sockets.

CAMERA

FLASHLIGHT

INTERNET

Allows read only access to
phone state.

Allows access to the
vibrator

READ_PHONE_STATE

VIBRATE

Allows using
PowerManager Wakelocks
to keep processor from
sleeping or screen from
dimming

Allows an application to

WRITE_EXTERNAL_STORAGE
ot Pt write to external storage.

Fig 7. Static malware analysis

Network information leakage

Destination 216.157.12.18:30
Tag TAINT_IMEI
GET

/getAd.php5?sdkapid=25006&auid=3572
42043237511&ua=Mozilla%2F5.0+%28Li
Data (ASCII) nux%3B+U%3B+Android+4.1.1%3GET
/getAd.php52sdkapid=250068auid=3572
42043237511 &ua=Mozilla%2F5.0+%28Li
nux%3B+U%3B+Android+4.1.1%3

474554202f67657441642e706870353f73
646b617069643d3235303036266175696
43d333537323432303433323337353131

Data (RAW) 2675613d4d6f7a696c6c61253246352e30
2b2532384c696e75782533422b5525334
22b416e6472669642b342e312e312533

Operation send

Fig 8. Network Activity

Special Issue RICSIT-2016 64 ISSN: 2278-621X

International Journal of Latest Trends in Engineering and Technology (IJLTET)

Opened network connections

File
descriptor
216.157.12.1 File
3:80 descriptor

216.157.12.1 File
3:80 descriptor

Destination 74.6.105.9:80

Destination

Destination

216.157.12.1 File
3:80 descriptor

216.157.12.1 File
8:80 descriptor
216.157.12.1 File
8:80 descriptor

216.157.12.1 File
8:80 descriptor

Destination

Destination

Destination

Destination

Fig 9. Opened network connections

V. CONCLUSION

In this paper malicious Android application detection system was Fig 7. Static malware analysis proposed. We
have used the permission model to and combination of permission to identify the potential threats in applications.
And the suspicious apps are forwarded to dynamic monitoring tool to keep track the call information of sensitive
API when application s are running. To conclude this we have observed some beneficial approach

1) The smali byte code which the result of decompilation and it is intermediate code which help in knowing the
obfuscation as it is not affected with any code obfuscation issues.

2) As it seems to be very simple by just inserting some monitoring smali bytecode without worrying of performance
issues.

3) This method can also be used in remote conditions also at large scale and to implement monitoring service
automatically.

The research moves ahead in direction where more sensitive api can be discussed and more real solutions to many
apps can be given be developing real time apps to do this. Some more methods can be combined for better result.

REFERENCES

[17 A.P.Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android permissions demystified,” in Proc. 18th ACM Conf. Computer. Computer
security, 2011, pp. 627-638.

[2] Google, Android Home Page, 2009. (http://www. android.com)

[3] D. Bornstein, Dalvik VM Internals, 2008. (https:/sites.google.com/site/io/dalvik-minternals).

[4] W. Enck, M. Ongtang, and P. McDaniel, “Onlightweight mobile phone application certification," in Proceedings of the 16th ACM
Conference on Computer and Communications Security, pp. 235-245, Chicago, USA, Nov. 2009.

[5] Google, Dex2jar: Tools to Work with Android .dexand java .classses, 2013. (http://code. google. com/p dex2jar/)

[6] D. Reynaud, D. Song, T. Magrino, E. Wu, andR. Shin, “Freemarket:shopping for free in android applications," in 19th Annual Network &
Distributed System Security Symposium, Hilton San Diego, USA,Feb. 2012.

[71 D. Octeau, W. Enck, and P. McDaniel, the DED Decompiler, 201 1. (http://siis. cse. psu. edu/ ded/ papers/ NAS-TR-0140-2010.pdf)

[8] Google, Smali, July 11, 2015. (http://code. google.com/ p/ smali/)

[91 Android apk scan report. (https://apkscan.nviso.be)

[10] Android Malware and Analysis - Page 72 - Google Books result,”https://books.google.co.in/books?isbn=148225220.

Special Issue RICSIT-2016 65 ISSN: 2278-621X

