International Journal of Latest Trends in Engineering and Technology (IJLTET)

Fault Analysis using Interaction Diagram

Dr K P Yadav

Director, KCC Institute of Technology and Management,
Greater Noida, Uttar Pardesh, India

Saroj Patel

Associate Professor, JNU,
Jodhpur, India

Tannu Arora

Associate Professor, JNU,
Jodhpur, India

Abstract- This paper mainly focuses on the interaction diagram test case generation techniques. We have considered the
execution state of the system. Software testing phase of the software development life cycle generally find the faults or
bugs during running state of the software. The case study of Railway Reservation System is discussed in this paper. The
test cases are generated using sequencing or interactions in the system from which fault analysis will be computed.

Keywords — Fault Analysis, Interaction Diagram, Railway Reservation, Software Testing
I. INTRODUCTION

This is blunder to give assumption that automated testing is only imprisoned and play again of testing process
manually. Actually, automation is basically different from testing manually: there are entirely different concepts and
chance. Even the automation never completely replace manual testing, because automation is about inevitability and
users are inherently erratic. Test Automation methods involves the following major factors for generating test case
such as Unified Modeling Language (UML) diagrams, Testing types like Black Box Testing, White Box Testing,
Testing techniques like model based, search based and symbolic execution, coverage criteria includes code based,
fault based and function based, UML and Automation Testing tools and algorithms"

So, use automation to verify what we expect, and use manual testing for what we don’t. There is a good potential for
reducing overall effort for test case generation from object oriented applications automatically from UML diagrams
as the system features are broadly classified during design phase. Test case generation from design specifications
has the added advantage of allowing test cases to be available early in the software development cycle, thereby
making test planning more effective.”

This paper includes the case study of real time application which is Railway Reservation System. Test cases are
generated from model based optimization techniques. This will be done with the help of UML behavior diagrams
which are dynamic in nature. The behavior diagram used here is sequence or interaction diagram. The UML
diagrams are created using ArgoUML tool. Firstly, class diagrams are generated using this tool. After that,
interaction diagrams are drawn which is converted into IDG i.e., Interaction Diagram Graph. Then, this graph is
traversed from which test cases are generated for each possible combination showing inputs and expected outputs.
From the test cases, mutation testing is to be done to analyze the faults from where mutation score is computed. The
overall steps are shown with the help of flow chart.

The figure 1 shows the steps of the analysis from the interaction diagram.

Special Issue RICSIT-2016 6 ISSN: 2278-621X



International Journal of Latest Trends in Engineering and Technology (IJLTET)

[ UL Modsling ]
[ Class Diagram Crestion using ArgolUNL tool ]
[ Code generation from creaed class dizsgram

[

¥

[ Intaraction Disgram Gensrstion veing ArmoUML ool ]

¥

[ Drizgram to Inters ction Diagram graph ie IDNG Converzion

!

[ Traverza [Di3

3

[ Genegate test cases for each combrinstion ]
¥

[ Anzlyze faviks veing muEtion testing from expacted outputs found ]

!

[ Computz muetion score from analysis ]

J—

FIG 1 Flow Chart of Test Case Generation

II. CASE STUDY: RAILWAY RESERVATION SYSTEM

This case study includes the generation of test cases of Railway Reservation System. The steps performed will be
according to the flow chart.

A.Class Diagram of Railway Reservation System

There are generally six classes in Railway Reservation System as shown in figure 2. These are basically train,
customer, ticket, railway administrator, database and bank. These classes have their own attributes and operations
according to their functionalities. There are also some relationships and roles which exists among these classes. The
relationship between train and customer classes is aggregation. The multiplicity between them is one to many means
that there are more than one passenger in the train but passenger belong to one train at a time. There is also
aggregation between train and database classes. All the other classes have association relationship among them. The
role of customer is to book the ticket. The customer information is stored in the database class. The role of railway
administrator towards the train is monitoring and towards the customer is to authenticate, also administrator controls
the database. The role between bank and ticket classes is to pay for the reservation.

Special Issue RICSIT-2016 7 ISSN: 2278-621X



International Journal of Latest Trends in Engineering and Technology (IJLTET)

Train Custamer Ticket
" CUst_name - it fare Integer
numcer nteger CUst_age : Ineger frainno - Integer
start - tet 1 g+ 7|oenderted _— frainname  teit
destingtion: text antress.: ted chasstype : text
contactno: nteger pnmo : Integer
Quota text
Make reservalon] travelinglate et
cancel feservion) travelingtine * nteger
find_train)
pint_fcket)
. aulfertcatzs
maniars Stores Pas
Database
Railiayaminisirator ttales - eger Bank
adi_name et — fle_type  Integer Eame Fexﬁ
designation  teit fle_size  Integer ranch- fed
shiftngtime  Integer It integer
Make_eservation) g
authertication) cancel_reservation]) -
upiate_oetals) fing_trai)
maintzin_detaisi)
newOperation)

FIG. 2 Class diagram of Railway Reservation

B. Interaction Diagram of Railway Reservation System

In this Interaction diagram, there are seven objects i.e., customer, train, railway administrator, printer, database,
ticket and bank which are connected among themselves through messages or interactions. These are seventeen
sequences for complete reservation system as shown in figure 3.

Special Issue RICSIT-2016 8 ISSN: 2278-621X



foustomer frain

1.Login

International Journal of Latest Trends in Engineering and Technology (IJLTET)

Failvay Admin

Iprinter

[database

Micket

fbank

2. Check Availabilty

3 Request reservation form

4 Response fom

5. Complete and submit form

6. Update customer detalls

7 Proceed to payment

§ Dehit Amount

9, Request for printing

12, Issue Ticket

10.Print Ticket

11, Update Printing

13. Request ficket cancellatio

14, Find Details

16.Ticket Canceled

18. Do Cancellation

17 Update Cancellgtion Defall

FIG 3 Sequence Diagram of Railway Reservation

C. Interaction Diagram Graph(IDG)
The created interaction diagram is converted into graph known as IDG i.e., Interaction Diagram Graph. This graph
consists of nodes and edges. The nodes indicate the states and edges indicate the sequences or interactions among
these states. State A is the initial state whereas, State B, C and D are final states. All others are intermediate states
numbered from s1 to s17 showing executing stages as shown in figure 4.

Special Issue RICSIT-2016

ISSN: 2278-621X



International Journal of Latest Trends in Engineering and Technology (IJLTET)

FIG. 4 Interaction Diagram Graph

D.Test Case Generation

After the interaction diagram conversion to IDG, the next step is the case generation of our study. These cases show
input including present state and the expected output which consists of next state and the result or action performed.
The action can be executing or exit stage depending on the intermediate or final states. These cases are also helps to
analyze the faults in the system. Generated test cases are tabulated in table 1.

TABLE 1 Test Cases from IDG

Test Case | 1nput Expected Output
Present State | Next State Result

tel State A S1 Executing
tc2 S1 S2 Executing
tc3 S2 S3 Executing
tc4 S3 S4 Executing
tcS S3 S5 Executing
tco S4 State B Exit

tc7 S5 S6 Executing
tc8 S6 S7 Executing
tc9 S7 S8 Executing
tc10 S7 S9 Executing
tcll S8 State B Exit

tcl2 S9 S10 Executing
tcl3 S9 S11 Executing
tcl4 S10 State C Exit

tcl5 S11 S12 Executing
tcl6 S11 S13 Executing
tcl7 S12 State B Exit

tcl8 S13 S14 Executing
tcl9 S13 S15 Executing
tc20 S14 State B Exit

tc21 S15 S16 Executing
tc22 S15 S17 Executing
tc23 S16 State B Exit

tc24 S17 State D Exit

III. RESULT AND ANALYSIS

For any other program, faults may occur in any development phase of a software. A fault is a structural weakness in
a software system that may lead to the systems eventually failing. To eradicate those faults in software system, an
efficient test case is needed. The more efficient the test cases are, the more testing can be performed in a given time
and therefore the more confidence, can be kept in the software. To solve this problem, mutation testing is performed.
Fault testing technique, is used to achieve correctness of the software. There are various mutation operators. We
have considered four of these(see Table 2).

Special Issue RICSIT-2016 10 ISSN: 2278-621X



International Journal of Latest Trends in Engineering and Technology (IJLTET)

TABLE 2. Mutation Operators

ABS Absolute value insertion
Parameter Change the letters of the parameter
DSA DATA statement alterations

SDL Statement deletion

A. Fault Analysis of Interaction Diagram

The faults were injected in the above mentioned operators and those were found shown in table 3 resulting in total
fault found 28 while seeded fault was 32.

Table 3. Fault Analysis

Fault seeded Fault Found

ABS 8 7
Parameter 7 7
DSA 10 8
SDL 7 6
32 28

Now, based on the data obtained from the above table, the graph drawn in figure 5.

Special Issue RICSIT-2016 1" ISSN: 2278-621X



International Journal of Latest Trends in Engineering and Technology (IJLTET)

12

10

8 /.
RN

6

==Fault seeded
4 ===FaultFound
2
0 T T

ABS Parameter DSA SDL

FIG. 5 Fault Analysis

After the analysis of faults, mutation score was computed. The formula of computing mutation score is given as
Mutation Score= (Fault found/Fault Injected)*100

Now, the values put in the above formula are

Mutation Score= (28/32)*100 = 87.5%

IV. CONCLUSION

Fault analysis is the process of seeding the faults in the software to improve the efficiency. After test case
generation, mutation score is calculated by mutation or fault analysis. Experimental results have shown that in
Interaction diagram, analysis of faults conducted is approximately 87.5%. In further researches, we will include
model based testing that will generate test cases because MBT is beneficial than other techniques.

The technique can be expanded for more complex and bigger applications. In future, the approach can be employed
to other UML diagrams like deployment diagrams etc.

However to improve our proposed system a combined approach is essential. We can also use collaboration diagram,
since unlike interaction diagram, it has the capability to handle branch statements which are more complex in
nature.

REFERENCES

[1] V. Maheshwari ,M. Prasanna. Generation of Test Case using Automation in Software Systems — A Review. Indian J of Sci & Tech 2015;
8:1-9.

[2] Ashish Verma,Maitrayee Dutta. Automated Test case generation using UML diagrams based on behavior. Int J of Innovations in Engg &
Tech 2014; 4:31-39.

[3] G. Fraser, A. Zeller. Mutation-driven generation of unit tests and oracles. IEEE Trans on S/w Engg 2012; 38:278-92.

[4] M.H Moghadam, S.M Babamir. Mutation Score Evaluation in terms of Object- oriented Metrics. IEEE 4th Int Conf on Comp &
Knowledge Engg 2014 ; 775-780 .

[51 7T Lallchandani, R Mall. A Dynamic Slicing Technique for UML Architectural Models. IEEE Trans on S/w Engg 2011; 37:737-71.

[6] Vikas Panthi, Durga Prasad Mohapatra. Test Sequence Generation Using Sequence Diagram. Int Conf on Advances in Computing, Springer
2012; 174:277

[71 PR Mateo, M P Usaola, J Offutt. Mutation at the multi-class and system levels. Sci of Comp Programming, Elsevier 2013; 78:364-387.

Special Issue RICSIT-2016 12 ISSN: 2278-621X



