International Journal of Latest Trends in Engineering and Technology (IJLTET) ISSN: 2278-621X

Sequence Diagram Extractor for Better
Software Visualization

Arya Bharti
M. Tech. Scholar
Department of Computer Science & Engineering.
Om Institute of Technology & Management, Juglan Hisar.

Surender Singh

Asstt. Professor
Department of Computer Science & Engineering.
Om Institute of Technology & Management, Juglan Hisar.

Abstract - The attempt has been made to generate a smaller sequence diagram from a larger one. The Sequence Diagram
is generated with the help of the Visual Paradigm for UML Version 10.0. This tool comes with the inbuilt functionality to
generate the image, excel as well as XML for the sequence diagram. The XML has been then parsed for transforming the
data objects in a format acceptable for programming across the other platforms. This has been done with the help of
JAVA DOM parser. The parsed file has been stored as the .txt file which is again modified to extract the valid program
slice as per the slicing criteria applied by the programmer. The output of this step has also been modified by replacing the
Object Ids with their names for better representation and understanding. This has been achieved by the tool JCreator
LE. The result of this step has also been stored in the form of a .txt file. Finally, the text file is in the desired format which
is accepted by another tool known as Quick Sequence Diagram Editor which generates the sequence diagram on the basis
of the last .txt file.

Keywords- Sequence Diagram, XML, Software Visualization, Slicing, Quick Sequence Diagram Editor.

L. INTRODUCTION
The software visualization and testing are some of the most costly and time consuming activities in the Software
Development Life Cycle. Both of the activities involve the analysis of the software architecture which is mediated
by the Sequence Diagrams. The sequence diagrams are a type of the interaction diagram which keep a track of the
messages shared in a software system on the basis of the time stamps and maintains all the information regarding the
system states, the objects, their lifespan, the messages shared between various objects and all other aspects. That is
why, the sequence diagrams are used for the software visualization and slicing.
Slicing: Slicing can be thought of as a technique for decomposing the software into parts based on a particular
criteria which is decided by the testes or the programmer to test whether the program satisfies the required
expectations or not. The slicing is also done on the basis of UML Sequence Diagram these days. Hence, if we are
able to reduce the size of the UML Sequence Diagrams, we shall be able to make the process of slicing as well as
software visualization, test case generations, and other such activities related to the software in a better manner.
UML Sequence Diagram: UML Sequence Diagram are of various types which represent the system model or
architecture in an abstract manner to provide the testers and other programmer a better view of the software
dependencies, timings, messages, guard conditions, control flow, message flow, lifetimes, and other such details.
There is but one problem with the sequence diagrams that they tend to become so huge with the size and complexity
of the software system that it becomes a herculean task to extract the relevant slice or chunk of the program from the
software to study or test it.
Examplel: An example sequence diagram for the ATM system with minimal functionality and no details given to
the security and other parameters is mentioned in the following section.

http://dx.doi.org/10.21172/1.71.053 378 Vol 7 issue 1 May 2016

International Journal of Latest Trends in Engineering and Technology (IJLTET) ISSN: 2278-621X

m
& 3
&V & ‘\\ g
o \‘ N
& ¢ & . &
i & & & e 5
b 1: inert AT Card o S N
E 1.4V aldale Card i g
: P [& # " ol
& K 12 CardVaidatos & A
& | SR S —— &
& § & & &
¥ o ; &
¢ 1.3sk for word o
i & -
g & & ¢
I 3 » 3
& 3 A 1 proituserto mpy_gﬁmwom & P g 3 y
P X &) & i
g o L i 4
A % & 2tnput P sworgv & N
i X ¥ I By
: 5 R - - K E
& & » & $1: Verfy Pasgword N
4 & o o R i
N L N i < 7 & =z & N
o i 8 ¢ 2.2 Pasgword Verffied ¢ o 4
N R & \J g o
| N »‘\] i ¢ °
b il & ¥ i & 3 &
. il i : D 1 23 Show Main Meny” o
$ & 0 ' o i & &
& % P & K & W & 3
& a F e & N U = &
& 3: Selectfo Withdraw Masley & o & L\;'
=3 ¥ = - rd >
3 & Y & S & S o
\\\\‘ < & 4:Inputdfie Amount 1= S & & &
2 . & B 4f: Send SMS
g 3 W &
o & A > A &
P P \. ‘\1 & 3 ‘_}' v—”\
W 3 & & h e
& & & ¢ i
gt 2 Ny > P |
u & q 3 &

Figure 1. Sequence Diagram of an ATM System for Money Withdrawal.

Example 2: Sequence Diagram at a random system time for some random objects interacting and sharing messages
across the system with some guard variables is another example. Find how the size of the sequence diagram
fluctuates from the one given above to the one given below.

WL ULV Ve Ve VWY

¥ il e ST

Figure 2. Sequence Diagram at a random time in a random system scenario
Now, as it is evident that the size of the sequence diagrams tends to be huge, we have focused on reducing this size
by employing the following:

e The unique property of the XML to enable the interchange of the data in between devices with different
platforms.

e The ability of the extraction of the program slice by passing a slicing criteria to a .java program via simple
java environments such as command prompt and JCreator.

e The ability of formatting the text files as per the desired format which is acceptable to the tool Quick
Sequence Diagram Generator.

e The ability of the above mentioned tool to generate the Sequence Diagrams directly from the .txt file in a
proper format.

e The ability of the java programs to run fast, on a very low system requirement and cross platform nature.

379

http://dx.doi.org/10.21172/1.71.053 Vol 7 issue 1 May 2016

International Journal of Latest Trends in Engineering and Technology (IJLTET)

II. IMPLEMENTATION OF THE TECHNIQUE

ISSN: 2278-621X

Step 1: Download, Install and create the JRE an JDK environment, set the environment variables and specify the

path.

Step 2: Download and Install the tool Visual Paradigm for UML version 10.0.
Step 3: Create a sample sequence diagram in the tool and export the diagram as XML. Find the screenshot of the
XML file in the following figure:

s e B Doty S Vo Pt it £+ 2 8 oy e B D

5 Wheecom [s

TF4
Linierion= "1 TertssibralysibighighDptont ieSensitr= Tabe lire=“watitied” Erortarienions 010" i

Cokome Tl T’ g laba” dather” heya Bhartls

Tabe aba’ Teon & "wh00" TainalinwisGasarstuingdnemt Trsption '\-m ot L-"\uu\,'ll‘f

T s b e
Sepprt wmw.m—-unmx.y.- faba W“ kL ekivbuins"troe” SiggatimlTaggediabesNabe”
\nmr e

n W00 Showlcbemullimal=[N = Yrae # Cibgrim="r"
s J\:---wu-mm il = e’ Sontiem e ot e
[Siagam="roe” Shomi toeliag

P ey Corstras eatTie gt bt
nun ﬂx‘t{f‘r‘lrd\:—ﬂ \dlﬂi ‘Linaurng

Mt el
CdCrer"ryh(192, 180,

table_name]

vy i {pelerence._table
e "\00) Eipndudiabionmudigran et : | wd00)*
0007 72 : :

F RO NbeE

Figure 3. XML File for Figure 2

Step 4: Generate a JAVA DOM parser with the DocumentBuilderFactory; method and parse the XML file generated

in Step 3.

mport java.io.File;

mport org w3c.dom. *;

import javax xml parsers DocumentBulderFactory;
mport javax xml parsers. DocumentBuilder:
import org xml sax SAXException;

import org xml sax. SAXParseException;
import org w3c.dom Document;

mport org w3c dom Element;

import org w3c.dom NodeList;

import org xml sax *;

import java.io.FileNotFoundException;
mport java io FileQutputStream;

import java.io. PrintStream;

public class Read
{
public static void main (String argv [){
int type_id;
oy §

D BuilderF dbf=D. BuilderF yaewl 0:
D Builder db = dbf newDx Builder();
Document doc = db.parse (new File("project.uml”);
doc getDocumentElement() normalize();
System setOut{new PrintStream(new FileOQutputStream("Test.txt")});
NodeList nodeList] = doc getEl ByTagName('l jonL ifeLine");
System out printin(*over all class tag"+nodeList] getLength():
if (nodeList] = null && nodeList] getLength() = 0)

1
for (int k= 0; k < nodeList].getLength(); k++)

{
Element ell = (mg w3c.dom Element) nodeList] item(k);
System intin("Cl Name="+ell g ibute("Name")+" "+"Class-Id="+ell getAttribute("Td"));
System out.printin("'n");

Figure 4. DOM Parser screenshot

Step 5: The output of the DOM Parser will be stored in a .txt file which is then fed again to JCreator for compilation.

http://dx.doi.org/10.21172/1.71.053

380

Vol 7 issue 1 May 2016

International Journal of Latest Trends in Engineering and Technology (IJLTET)

I s
Fa fde Nes Ot bl Bon Tooa Confgeee Weoos wap
]] Ll i L Wl dd L

Ut Par Cilbwikic jowa® W
i imgort juvs.io.7y
impare Jave; ekl v
giume Criveris
|
(! paplic suszic woid mainiSezing argef})
I
ey
|| Datafnpurdtream Siisses Deralnpecic e (Sysce
! dyvomm.out . pranclini “Flases snzez zhe dlicisg C
BEring sa=dil.resdlizelir
v wialy
| HEtITIEEN THAVIFRAR = P4Y FRIEEREVYITTRERUTIRIY . YET I}
| Dazalnpurdcream in = e Davelnpacicoeas (fEsccmes)
| Battsyechkesder br = pew Buidivreibendes irvy InpundiaessRendesiing)/

| VeaEOn wlshew Ve Lo)
| ALFARG BLTLIAES

LEimm. imdagGE§= % imal

shemm, mubatringid o, indundd i* *}ir
HTBEAGRFVELAR LR IRARRDE 1Y "] %5, BN 2ARNRNNI
whids | {ecrbing & Broresdfiee ji = oull)
i
2 irirkine. irdex@f ["[™i *= -1 ik s=rliza,isdeslf (1% 1= 0%

T T

Figure 5. JCreator Screen Shot for txt file

Message=[z<50)msg3 {TO-Object-ld= dOJLAXyF YHySDwM?7 & From-Object-Id= jHxLAXyFYHySDwMO0}
Message=[x+y+z>0]msgd {TO-Object-Id= y0xLaXyF YHySDwMt & From-Object-Id= dOJL4XyFYHySDwMT}
Message={z=00]msg® {TO-Object-ld= jHxL4XyF YHySDwMD & From-Object-Id= dOJLAXyFYHySDwMT}
Message=[r+p=200jmsg10 {TO-Object-1d= 4IpL4XyF YHySDwNC & From-Object-Id= jHL4XyF YHySDwMO}
Message=[xrz>100jmsgl6 {TO-Object-Id= ZSZLAXyF YHySDwNQ & From-Object-Id= y0sL4XyF YHySDwMt}
Message=[x+z<100]msg17 (TO-Object-Id=rASLAXyF YHySDWNX & From-Object-ld= ylxL4XyFYHySDwMt)
Message=[x=4) and 7=40}msg20 {TO-Object-Id= rIFL4XyF YHySDwNe & From-Object-Id=rASL4XyF YHySDwNX}
Message=[v=50 and >=40Jmsg2] {TO-Object-1d= ILAXyFYHySDwN & From-Object-Id= (IFL4XyFYHySDwiNe}
Message=[z>=0]msg22 {TO-Object-1d= rIFL4XyF YHySDwNe & From-Object-Id= IbIL4XyF YHySDwNI}
Message=[y*r>0]msg23 {TO-Object-Id= ZSZL4XyFYHySDwNQ & From: Object-Id= rFLAXyF YHySDwiNe}
Message=[z-p>0]msg24 {TO-Object-Id= IpL4XyFYHySDwNC & From-Object-1d= ZSZLAN:FYHySDWNQ}
Message=[z=100]msg25 {TO-Object-Id= SipLAXyF YHySDwN] & From-Object-Id= 4IpL4XyFYHySDwNC}
Message=[z-q>0]msg26 {TO-Object-Id= dOJLAXyFYHySDwMT & From-Object-1d= SipL4XyFYHySDwNJ}

Figure 6. Output File after the slicing criteria is applied

ISSN: 2278-621X

Step 6: Now, the Jcreator will ask for the slicing criteria which has been fixed as ‘z’ for the diagram in Figure 2.
Finally, the output will also be generated in the form of a text file.

Step 7: This file is input to another java program to replace the Object Ids with the Object Names which will make

the addressing and representation easy and better resp.

http://dx.doi.org/10.21172/1.71.053

381

Vol 7 issue 1 May 2016

International Journal of Latest Trends in Engineering and Technology (IJLTET)

Message=[z<50]msg3 {TO-Object= Object4 & From-Object= Object3}
Message=[x+y+z=>0]msg4 {TO-Object= Object2 & From-Object= Objectd }
Message=[z=90]msg9 {TO-Object= Object3 & From-Object= Objectd}
Message=[z+p=200]msgl0 {TO-Object= Object’ & From-Object= Object3 }
Message=[xtz>100]msgl6 {TO-Object= Object? & From-Object= Object2}
Message=[x+z<100]msgl7 {TO-Object= Object8 & From-Object= Object2}
Message=[x=40 and z=40]msg20 {TO-Object= Object? & From-Object= Object8}
Message=[v=50 and z>=40}msg21 {TO-Object= Object10 & From-Object= Object9}
Message=[z>=0]msg22 {TO-Object= Object? & From-Object= Object10}
Message=[y*z=0]msg23 {TO-Object= Object? & From-Object= Object9}
Message=[z-p>=0]msg24 {TO-Object= Object5 & From-Object= Object7 }
Message=[z>100]msg25 {TO-Object= Objectd & From-Object= Object5}

Message=[z-g>0]msg26 {TO-Object= Objectd & From-Object= Object6}

Figure 7. Program to Replace the Ids with Names

ISSN: 2278-621X

Step 8: Finally, the output file is again compiled by a java program to generate the txt file which is in proper format
to be compiled by the Quick Sequence Diagram Editor tool which takes inputs in a fixed format.

import java.io.*;
import java.util.*:
class FileRead
{
public static void main(String args[])
i
Try
{FileInputStream ffstream = new FileInputStream("rupi.txt"):
DataInputStream in = new DatalnputStream (ffstream);
BufferedReader br = new BufferedReader (new InputStreamReader (in)):
String strLine;
Vector v=new Vector();
Vector v2=new Vector():

while ((strLine = br.readLine()) != null)
{ String = ;
if (strLine.indexOf ("TO-OCbject”™) != -1)
{ int i=strLine.indexOf ("TO-Cbject™)+10;
s=strline.substring(i,strline.indexOf (" ", (i+2}});
v.addElement (s) ;
if (strLine.indexOf ("From-Object™) != -1)

[
//v2.addElement (s) ;
int ii=strLine.indexOf ("From-Cbject")+12;
String ss=strline.substring(ii,scrLine.indexOf("}", (11+2)));
v2.addElement (ss) ;
v2.addElement (3) ;
ii=striine.indexOf ("Message=")+8;
ss=strLine.substring (ii,strline.indexOf("{", (1i+2))});
+2.addElement (ss) ;

if (strLline.indexOf ("From-Cbiect™} != -1)

H
int i=strlLine.indexOf ("From-Cbject™”)+12;
s=strline.substring(i,strline.indexOf ("}", (i+2}});

v.addElement (s} ;

Vector vl=new vVector():

Figure 8. Program for the conversion of the format of input to the Quick Sequence Diagram Editor
Step 9: Download and Install the Quick Sequence Diagram Editor tool which is available as open source. It is an
executable JAR File which will take inputs in the form of text (in proper format) and generate the sequence diagram

corresponding to the same in a few seconds.

http://dx.doi.org/10.21172/1.71.053 382

Vol 7 issue 1 May 2016

International Journal of Latest Trends in Engineering and Technology (IJLTET) ISSN: 2278-621X

fEld # ‘Qn@ a1 ‘@ |y =H= @g@m
T sequerce ciagrams f
Tt i <0nzmumt>| <0nzmumt>| <onenzumt>| <Oherl5><ml’| <03ec7><m>| <Ol
<z<50jmsg? >
<Pety-z=limsgd > i
i
N | N 1
<[z=00msgd >
<[z+p>200jmsc 10> I
}

1 i M

¢ Cjectdy:c (kject
< (bject>:< Objects <

S BTN |

Figure 9. Quick Sequence Diagram Editor with the generated sequence diagram on the top and code of the txt file in the bottom section

III. RESULT AND ANALYSIS

The result has been released in the form of a much smaller sequence diagram. From the diagram shown in the Figure
2, we have extracted the diagram in the Figure 9. This extraction has been done on the basis of the slicing criteria ‘z’
which means that all the objects with the messages having the variable ‘z’ in it will be extracted from the complete
diagram and a refined slice will be generated for the programmer or the tester.

IV.CONCLUSION

There are a lot of activities in the software development lifecycle which depend on the UML Sequence Diagram and
if we can reduce the size of this diagram, we shall be able to make all those phases easy and less costly.

This technique can be applied for better software visualization, refined slice generation, minute examination and
testing of the software slices and better test case generation from the sequence diagram.

REFERENCES

[1] Shaikh, R. Claris6, U.K. Wiil, and N. Memon. Verification-driven slicing of UML/OCL models. In Proceedings of the IEEE/ACM
International Conference on Automated software engineering, pages 185-194, ACM, 2010.

[2] H. Kagdi, J.I. Maletic, and A. Sutton, “Context-Free Slicing of UML Class Models”, In Proceeding of 21st IEEE International Conference
on Software Maintenance, pp. 635-638, 2005.

[3] Kevin Lano Crest, “Slicing of UML State Machines”, In Proceedings of the 9th WSEAS International Conference on Applied Informatics
and Communications, pp.63-69, 2009.

[4] P. Mathur, “Foundation of Software Testing”, Pearson/Addison Wesley, 2008.

[5] IEEE Standard 1059-1993, “IEEE Guide for Software Verification and Validation Plans”, pp.1-87, Computer Society, 1993.

[6] Richard Torkar, “Towards Automated Software Testing Techniques, Classifications and Frameworks”, Doctoral Dissertation,
Department of Systems and Software Engineering, Blekinge Institute of Technology, pp.1-235, Series No 2006:04, Sweden, 2006.

[7] R. D. Craig, S. P. Jaskiel, “Systematic Software Testing”, Artech House Publishers, Boston-London, 2002.

[8] S. R. Rakitin, “Software Verification and Validation for Practitioners and Managers”, Artech House Publishers, Boston-London, 2001.

[91 Shaikh, R. Clariso, U.K. Wiil, and N. Memon. Verification-driven slicing of UML/OCL models. In Proceedings of the IEEE/ACM
International Conference on Automated software engineering, pages 185-194, ACM, 2010.

[10] Kevin Lano Crest, “Slicing of UML State Machines”, In Proceedings of the 9th WSEAS International Conference on Applied Informatics
and Communications, pp.63-69, 2009.

[11] H. Kagdi, J.I. Maletic, and A. Sutton, “Context-Free Slicing of UML Class Models”, In Proceeding of 21st IEEE International Conference
on Software Maintenance, pp. 635-638, 2005.

[12] J.H. Bae, K.M. Lee, and H.S. Chae., “Modularization of the UML metamodel using model slicing”, IEEE 5th International Conference on
Information Technology: New Generation., pp. 1253—1254, 2008.

[13] K. Androutsopoulos, D. Clark, M. Harman, Z. Li, and L. Tratt, “Control dependence for extended finite state machines”, Fundamental
Approaches to Software Engineering, pp. 216-230, 2009.

http://dx.doi.org/10.21172/1.71.053 383 Vol 7 issue 1 May 2016

International Journal of Latest Trends in Engineering and Technology (IJLTET) ISSN: 2278-621X

[14] Mabhesh Shirole, Rajeev Kumar, “Testing for Concurrency in UML Diagrams”, ACM SIGSOFT Software Engineering Notes, vol. 37, No.
5, pp.1-8,2012.

[15] Davide Falessi, Shiva Nejati, Mehrdad Sabetzadeh, Lionel Briand, and Antonio zessina, “SafeSlice: A model slicing and design safety
inspection tool for SysML”, In Proceeding 19th ACM SIGSOFT Symposium on the Foundations of Software Engineering and 13rd
European Software Engineering Conference, ACM, 2011.

[16] B. Korel, I. Singh, L. Tahat, and B. Vaysburg, “Slicing of State Based Models”, In Proceeding of International Conference of Software
Maintenance, pp.34-43, 2003.

http://dx.doi.org/10.21172/1.71.053 384 Vol 7 issue 1 May 2016

