International Journal of Latest Trends in Engineering and Technology (IJLTET) ISSN: 2278-621X

An Efficient Heuristic Algorithm for Reliable
Non Distributed Join Processing in Distributed
Databases

Vivek Kumar
Department of Computer Science,
Gurukula Kangri Vishwavidyalaya, Haridwar-249404

Prof. Vinod Kumar
Department of Computer Science,
Gurukula Kangri Vishwavidyalaya, Haridwar-249404

Abstract - In computing systems, the quality, in terms of assurance with some degree in its operations, is desired. This
aspect of quality plays a greater role in distributed computing systems where multiple elements (processors, links etc.),
with varied degree of capabilities, are involved. In the case of Distributed Database Systems, many measures at different
levels are included. Keeping in view of assurance, the data units are replicated and transaction management protocols are
designed. Reliability factor has also been included in deciding the strategy for the allocation of operations for performing
the required query. This paper explores the reliability aspect when it is achieved through the use of redundant processors
and communication links among the sites of the distributed database system and allocation of operation of distributed
query with mission reliability as the objective. We have suggested a heuristic algorithm in contrast to [1] which has
increased the computational efficiency relying on the fact that the addition and multiplication operations are more
efficient than the exponential function calls and the product operation on the results of these calls. Programs are designed
to implement both the original and the enhanced algorithms. Several experiments (simulated) are conducted and the
results show a very considerable enhancement obtained by applying the present heuristic along with the concept of more
efficient operations. A total of six different sets of queries have been considered for simulation. Each set has been explored
for six different ranges of execution cost over 200 randomly generated sets, thus, resulting into a total of 7200 simulations.
The total gain achieved in terms of number of nodes of the search tree is 84.22%. The execution time difference could not
be clearly notioned below 5 joins. However, the approximated total gain in this regard is obtained as 53.84%.

Key Words: Distributed Databases, Query processing, Heuristic Algorithms, Reliable Task Allocation.

[. INTRODUCTION

The advent of telecommunication era and the constant development of hardware and network structures have
encouraged the decentralization of data while increasing the needs to access information from different sites. A
distributed database system is a collection of sites on a common high-bandwidth network [2]. Logically, data
belongs to the same system but physically it is spread over the sites of the network, making the distribution invisible
to the user [3]. Each site is an autonomous database with its processing capability and data storage capacity. The
advantage of the distribution resides in achieving availability, modularity, performance, and reliability. The
reliability of a distributed system depends not only on the reliability of the communication network, but also on the
processing node reliability and the distribution of the resources in the network [4]. A number of approaches and
modeling techniques have been suggested for the reliable allocation of resources among the sites [5, 6, 7, 8, and 9].
To improve the system reliability, hardware redundancies can be introduced. When the system hardware
configuration is fixed, the system reliability mainly depends on the allocation of resources. The problem of reliable
allocation of join operations of distributed database system, main resource of distributed query processing, using
processor and communication link redundancies, has been discussed in [1]. This paper re-explores the problem of
reliable join processing and suggests a more efficient heuristic algorithm.

II. NOTATION AND ASSUMPTIONS

1. Acronyms

http://dx.doi.org/10.21172/1.71.039 270 Vol 7 issue 1 May 2016

International Journal of Latest Trends in Engineering and Technology (IJLTET) ISSN: 2278-621X

RDS

ETM

ITC

AM

FV

MIP

2. Notation

B()

Py

Pk

A

Xik

Q
Q(p.a.k.D)
C
c(i,j,p.q)

R (T,X)

redundant distributed system

execution time matrix

inter-task communication

allocation matrix

fragmentation vector

multiple-join problem

Boolean function: B(True) =1 ; B(false) =0

redundancy level of RDS

set of tasks to be executed

task iin T

number of Joins in the query

set of processing nodes in RDS

number of processing nodes in P

processing node k in P

processor at Py

failure rate of py

ETM for module t; running on py

ITC cost between t; & t; during the mission; measured in some quantity of data units
communication link connecting P, & P,

transmission rate of link I,

failure rate of link I,q

communication path between Ps & Py; it contains at least one link
m x n binary matrix corresponding to a task assignment

B(t; is assigned to py): element of X

binary path matrix

B(l,q belongs to Lyj)

inter-task communication cost: a function of X

cij . B(cij uses 1)

reliability of py: probability that py is operational for executions of tasks assigned to it under

assignment X during the mission

http://dx.doi.org/10.21172/1.71.039 271 Vol 7 issue 1 May 2016

International Journal of Latest Trends in Engineering and Technology (IJLTET) ISSN: 2278-621X

Tp(T,X) reliability of 1,: probability that 1,4 is operational for performing all ITC that use 1, under
assignment X during the mission

R(T,X) reliability of the distributed-computer system

3. Assumptions

e The underlying RDS is heterogeneous.

e The network topology of the RDS is free from cycles.

The processors or communication links have two states, namely operational or failed, with constant failure
rates.

Units can fail independently.

Task-allocation implies Join allocation.

The software is error free.

The cost includes only transmission costs.

III. DATABASE DISTRIBUTION AND JOIN ALLOCATION

Each file of the distributed database is a set of homogenous records those are not necessarily stored at a common
node. A file can be logically partitioned into disjoint subsets of records called fragments [10]. The size of the file is
the number of bytes of the file. The size of each fragment is given by a fragmentation vector, depicted as number of
bytes of the fragment of the file. Each fragment can be allocated at one of the nodes of the network. An allocation
matrix [11] defines the allocation of the fragments of a file.

A Join operation consists of finding those records of two different files that possess some matching property. In a
distributed database, the join can be performed in two ways namely, Non-distributed Join and Distributed Join.

The Non-distributed join, considered in this paper, produces a result file that is not distributed. For estimating the
size of the result file, statistical-profile estimation methods [12] can be used. An operator tree representational
approach is used to depict a global query, consisting of several joins. To perform join operations some fragments of
files are transferred from their location site to the execution site.

IV. RELIABLE ALLOCATION OF JOINS

This paper extends the model III of [4] in which explicit reliability expression, in terms of system parameters and
mission reliability, has been formulated where a mission is a continuous time interval that is sufficiently long for
unit failures to become a concern.

Under task assignment X, the reliability of p, , for the execution of the tasks assigned to it during the
mission [4], is:

1. Reliability Expression Formulation

Rk(T,X)zexp(— }\’kzxikeikj (1)
P

The reliability of link 1,4 is

http://dx.doi.org/10.21172/1.71.039 272 Vol 7 issue 1 May 2016

International Journal of Latest Trends in Engineering and Technology (IJLTET) ISSN: 2278-621X

m-1 m
rpq (TSX) = exp(_ quzzc(iﬁj7p7q)/wqu (2)
j=li=j+l1
C(iajapa q) = ZZQ(P, g k7 1)XikalCij €)
k=1 1#k

Thus, the reliability of the system with double redundancy is given by
R(T,X) = [TR (T, X)2 = Ry (T, X)] 1 (T, X)(2 = 1,4 (T, X)) 4)
k=1 g

2. Reliability Approximation

For 0 <X, <1,i=1,2---, by a Taylor series expansion we have:

e 12—) =1-x+% —-~1-X ®)

ﬁ(l—xf)zl—zn:xf+2xfxf—-~~z1—zn:xi2 (6)
i=1 i=1

i=1 i i

[[ie-e=[[a-x)~1-3x G
i1 i1 i1

Using (7) for approximating (4), we have

R(T,X) = H R, (T,X)2-R (T,X)] [, (T,X)2 -1, (T, X))

(3)
~ 1-COST(T,X)
n m) . m-1 m o 5
COST(T, X) = D" (hy D Xy€)” + 2 (kg D D (i Jp, /W) ©)
k=1 i=1 Ing i=li=j+1
The error of the approximation is:
n m 3) m-1 m o 3
ERROR = Z(kk ZXikeik) + Z(qu Z ZC(I, 3,0, D/wW,) (10)
k=1 i=1 log j=li=j+

http://dx.doi.org/10.21172/1.71.039 273 Vol 7 issue 1 May 2016

International Journal of Latest Trends in Engineering and Technology (IJLTET) ISSN: 2278-621X

In order to maximize the approximate reliability (8), it is sufficient to minimize COST(T,X), which is nothing but
the approximated unreliability.

V. THE PROPOSED MODEL AND ALGORITHM

The algorithm assumes redundancy at both processors and communication link of the underlying distributed system.
It finds an assignment of joins to the sites of the distributed database system and approximated system un-reliability
cost is minimized for finding the reliable execution nodes.

1. Model

Minimize: COST(T,X)
Subject to: x;, =0or 1,

Forallik:1 <i<m,1<k<n

This optimization problem is converted to a state-space search-tree problem. For finding the goal node, algorithm
uses a heuristic function f to order nodes for expansion [4]. At each expansion, only the node with minimum cost of
unreliability is expanded. This function is defined as the sum of two components:

i.e. foranode V corresponding to an assignment X ° with t,,t,,...,t assigned

f(r)=g(v) +h(v) an
where, the function g is a measure of the cost of getting from the initial state to the current node

g() = COST(T.X}) 1)

and the function h is an estimate of the additional cost of getting from the current node to a goal state. While
considering a node of search tree, for expansion, the heuristic used in the algorithm focuses only on recently
generated nodes, at each level, in contrast to all unexpanded nodes considered in [1].

2. Algorithm

1. Order m joins according to join precedence in the query tree.
. Initialize the assignment matrix.
3. Consider the first or next join j of m joins. If all the joins have been considered, calculate and record the
cost of transmission for this complete assignment and go to 7.
4. Create a new list, called NODES.
5. For each processor k of n
If the execution cost for j on k is finite
Then create a new node with this incomplete join assignment up to join j and insert it into NODES list after
calculating the corresponding f-value.
1. Choose node from NODES with the least f-value and populate assignment matrix with the corresponding
processor assignment for join j. Go to 3.
2. Output the assignment with its cost of transmission and its system reliability.
3. Stop.

http://dx.doi.org/10.21172/1.71.039 274 Vol 7 issue 1 May 2016

International Journal of Latest Trends in Engineering and Technology (IJLTET) ISSN: 2278-621X

VI. SIMULATION RESULTS AND DISCUSSION

The developed algorithm and the algorithm given in [1] have been coded in C. A total of 7200 simulations were
subjected to the codes of both the algorithms implemented on Pentium III Personal Computer using Windows XP
based Microsoft Visual C++ 6.0 compiler. To estimate the time factor, the clock() function of WINDOWS API is
used.
As observed from Table 1, the overall reduction in the total number of nodes generated, as compared to algorithm
[1] is 84.42%. Table 1 also shows the comparison of execution times of the implemented algorithms. Though the
values, given in this table, are higher than the theoretical expectations, inspired by the mathematical formulation of
the problem, yet these can be considered as good estimates of the time. The variation in the values of execution time
from the theoretical expectations can be attributed to the limitation of the hardware clock of the system, clock()
function of WINDOWS API and hardware implementation of exponential and multiplication operations. However,
it can be noticed from Table 1 that the total averaged time reduction achieved through our algorithm is 53.85% as
compared to algorithm [1]. These results have been shown graphically in Fig. 1 and Fig. 2 respectively.
The proposed algorithm and the algorithm [1] have also been subjected to 7200 simulations for six values of joins
and various ranges of the values of execution cost to observe variations in reliabilities of join allocation. These
results are presented in Table 2. The first column of this table contains number of joins. The second column consists
of various values of upper bounds of the entries of ETM. For example, a value 15 in the second column, for 3 joins,
indicates that for the 200 simulations, considered for 3 joins, 200 execution time matrices were randomly generated
whose elements were less than or equal to 15. Column 3 of Table 2 lists the largest variations in the reliability of
allocation of distributed joins, encountered during the 200 simulations corresponding to the different ranges of the
entries of ETM and a given number of joins. For example, the value 0.000001007 is the maximum variation in the
reliability values, out of 200 simulations run for 200 different values of ETM having elemental value less than or
equal to 15 for 3 join problems. From this table, one can observe that the variations in the reliability values of
distributed join allocation, ranging from 0.000001007 to 0.000035088, are negligible as compared to the achieved
computational gain (i.e. 53.85 %).

VII. CONCLUSION

For the non-distributed join operations, required by a global query in a distributed database, a mathematical model is
formulated and a heuristic algorithm is designed. While considering a node of search tree, for expansion, the
heuristic used in the algorithm focuses only on recently generated nodes, at each level, in contrast to all unexpanded
nodes considered in [1]. The allocation problem of join operations is addressed with the consideration of reliability
of the system and the communication cost required for transmitting the fragments. Remarkable gain has been
achieved in the average number of generated nodes as well as execution time. The proposed approach can be
implemented as a part of the optimizer of any database system along with the earlier one [1] and the selection of the
algorithm could be problem specific. If the level of criticality is almost 100% then earlier algorithm [1] can be
chosen and if it is about 99.99% then the proposed algorithm can be chosen with 53.85% gain on the execution time.

REFERENCES

[1] A. K. Vermaand M. T. Tamhankar, “Reliability Based Optimal Task Allocation in Distributed Database Management Systems,” IEEE
Trans. Reliability, vol. 46, no. 4, pp. 452-459, 1997.

[2] B.Karwin, “Interbase Server Configuration and Optimization”, Borland Developer’s Conference, 1996.

3] D. Chatziantoniou, D. and K. Ross, “GroupWise Processing of Relational Queries”, in Proceedings of the 1997 VLDB Conference, pp.
476-485, 1997.

[4] S- M. Shatz and J.-P. Wang, “Models and Algorithms for Reliability oriented Task Allocation in Redundant Distributed Computer
Systems,” IEEE Trans. Reliability, vol. 38, no. 1, pp. 16-26, 1989.

[5] S Srinivasan and N. K. Jha, “Safety and Reliability Driven Task Allocation in Distributed Systems,” IEEE Trans. on Parallel and
Distributed Systems, vol. 10, no. 3, pp. 238-251, 1999.

[6] S Haririand C. S. Raghavendra, “Distributed Functions Allocation for Reliability and Delay Optimization,” in Proc. IEEE/ACM 1986
Fall Joint Computer Conf.,Dallas, 1985, pp. 344-352.

http://dx.doi.org/10.21172/1.71.039 275 Vol 7 issue 1 May 2016

International Journal of Latest Trends in Engineering and Technology (IJLTET) ISSN: 2278-621X

(7]

(8]

(9]

[10]

(1]

[12]

D.J. Chen and T.-H. Huang, “Reliability Analysis of Distributed Systems Based on Fast Reliability Algorithm,” IEEE Trans. on Parallel
and Distributed Systems, vol. 3, no. 2, pp. 139-154, 1992.

G.-J. Hwang and S.-S. Tseng, “A Heuristic Task Assignment Algorithm to Maximize Reliability of a Distributed System,” IEEE Trans.
on Reliability, vol. 42, no. 9, pp. 408-415, 1993.

V. Kumar and K. K. Aggarwal, “Petri Net Modeling and Reliability Evaluation of Distributed Processing Systems,” Reliability
Engineering and System Safety, vol. 41, pp. 167176, 1993.

S. Ceri and G. Pelgatti, “Allocation of Operations in Distributed Database Access,” IEEE Trans. Computers, vol. C-31, no. 2, pp. 119—
129, 1982.

S. Ceri and G. Pelagatti, Distributed Databases: Principles and Systems. McGraw Hill, 1985.

M. V. Mannino, P. Chu, and T. Sager, “Statistical Profile Estimation in Database Systems,” ACM Computing Surveys, vol. 20, no. 3,
pp. 191-221, 1988.

Table 1: Results Comparison Table

Number of Average Numﬁz;:sf Comparison Average Execution Time Order

Joins . Proposed Algorithm Proposed
Algorithm [1] Algol:‘ithm i 1] Algol:‘ithm

3 14 11 0.001 0.001

4 27 15 0.001 0.001

5 52 19 0.001 0.001

6 102 23 0.002 0.001

7 199 26 0.003 0.001

8 402 30 0.005 0.001

Total 796 124 0.013 0.006

Table 2: Variations in Reliability of Joins as compared to [1]

No. Upper value of Variation in
of Joins | range of ETM Reliability values
3 15 0.000001007

20 0.000001665
25 0.000003840
30 0.000002909
35 0.000007268
4 15 0.000003232
20 0.000005994
25 0.000007379
30 0.000008434
35 0.000014322
5 15 0.000003054
20 0.000011018
25 0.000010291
30 0.000010467
35 0.000027790
6 15 0.000004466
20 0.000016647
25 0.000011309
30 0.000014804

http://dx.doi.org/10.21172/1.71.039 276 Vol 7 issue 1 May 2016

International Journal of Latest Trends in Engineering and Technology (IJLTET)

35 0.000021966
7 15 0.000005789
20 0.000012904
25 0.000010476
30 0.000013140
35 0.000035088
8 15 0.000007412
20 0.000008947
25 0.000011223
30 0.000026819
35 0.000025157

Number of Jolns

—e—Algorithm [1]

—a— Proposed Algorithm

Figure 1: Comparison of Number of Nodes Generated

http://dx.doi.org/10.21172/1.71.039

277

ISSN: 2278-621X

Vol 7 issue 1 May 2016

International Journal of Latest Trends in Engineering and Technology (IJLTET) ISSN: 2278-621X

0.004 -

0.001 # & £ 2 =

Order of Execution Tame (in sec.)

Number of Jolne

—e—Algorithm [1] —&— Proposed Algorithm

Figure 2: Execution Time Comparison

http://dx.doi.org/10.21172/1.71.039 278 Vol 7 issue 1 May 2016

