A three-step iteration method for pseudo-contraction mappings in Hilbert spaces

Gopal Meena
Department of Applied Mathematics
Jabalpur Engg. College Jabalpur(M.P.), India

V.H. Badshah
School of studies in Mathematics
Vikram University Ujjain(M.P.),India

Abstract. In this paper we propose a composite three-step iteration method to obtain a convergence theorem for countable family of Lipschitz pseudo-contraction mappings in Hilbert spaces.

Keywords: pseudo-contraction mapping, uniformly closed, common fixed point, iterative method.

I. INTRODUCTION

Let C be a non-empty closed convex subset of Hilbert space H. A mapping $T : C \to C$ is a k-strictly pseudo-contraction if there exists a constant $k \in [0,1)$ such that

$$
\| Tx - Ty \|^2 \leq \| x - y \|^2 + k \| (I - T)x - (I - T)y \|^2 , \quad \forall \ x, y \in C
$$

(1.1)

If $k = 1$, then T is said to be pseudo-contractive. T is said to be strongly pseudo-contractive if there exists a positive constant $\lambda \in (0,1)$ such that $T + \lambda I$ is pseudo-contractive. It is easy to see that k-strictly pseudo-contractions are between non-expansive mappings and pseudo-contractions.

In 1953, W.R. Mann[7] introduced the standard Mann’s iterative algorithm which generates a sequence $\{x_n\}$ by:

$$
x_0 \in C, \ x_{n+1} = (1 - \alpha_n)x_n + \alpha_n Tx_n ; \quad \forall \ n \geq 0,
$$

(1.2)

where $\{\alpha_n\}_{n \geq 0} \subseteq (0,1)$.

The Mann’s iteration process does not generally converge to a fixed point of T even when the fixed point exists. If for example C is nonempty, closed, convex and bounded subset of real Hilbert space, $T : C \to C$ is nonexpansive and the Mann iteration process is defined by (1.2) with (i) $\lim_{n \to \infty} \alpha_n = 0$ (ii) $\sum_{n=1}^{\infty} \alpha_n = \infty$, one can only prove that the sequence is an approximate fixed point sequence, that is $\| x_n - Tx_n \| \to 0$ as $n \to \infty$.

To get the sequence $\{x_n\}_{n \geq 1}$ to converge to a fixed point of T (when such fixed point exists), some type of Compacness condition must be additionally imposed either on C (e.g. C is compact) or on T.

In 1974, Ishikawa[3] introduced the following iteration process, which in some sense is more general than that of Mann and which converges to a fixed point of a Lipschitz pseudo-contractive self map T of C.

where \(\{\alpha_n\}, \{\beta_n\} \) are sequences of positive numbers satisfying the conditions

(i) \(0 \leq \alpha_n \leq \beta_n \leq 1 \)

(ii) \(\lim_{n \to \infty} \beta_n = 0 \)

(iii) \(\sum_{n=0}^{\infty} \alpha_n \beta_n = \infty \). The iteration method of Ishikawa [3] which is now referred to as the Ishikawa iteration method has been studied extensively by various authors (e.g. see [1,5,6]). In 2009 X.L. Qin et.al[8] modified the Mann’s iteration method by using the following composite iteration scheme

\[
x_i = x \in K, \text{ arbitrarily chosen}
\]

\[
y_n = P_{K} \{ \beta_n x_n + (1- \beta_n) T x_n \}
\]

\[
x_{n+1} = \alpha_n f(x_n) + (1 - \alpha_n) A y_n
\]

(1.4)

where \(T : K \to H \) is k-strictly pseudo-contractive mapping \(f : K \to K \) is contraction , and \(A \) is a strongly positive bounded linear operator on \(K \). Under some mild conditions on the parameters \(\{\alpha_n\} \text{ and } \{\beta_n\}, \text{ they proved that the sequence } \{x_n\} \text{ defined by (1.4) converges strongly to } x^* \). In 2011 Habtu Zegeye et.al.[14] generalized the algorithm given by Tang et.al.[9] to Ishikawa iteration process(not hybrid) as follows. Let \(T_i : C \to C, i = 1,2,\ldots, N \), be the family of Lipschitz pseudocontractive mappings with Lipschitzian constant \(L_i \) for \(i = 1,2,\ldots, N \), respectively. Assume that the interior of \(F = \bigcap_{i=1}^{N} F(T_i) \) is non-empty. Let \(\{x_n\} \) be a sequence generated from an arbitrary \(x_0 \in C \) by

\[
y_n = (1- \beta_n) x_n + \beta_n T_n x_n
\]

\[
x_{n+1} = (1 - \alpha_n) x_n + \alpha_n T_n y_n
\]

(1.5)

under some conditions \(\{x_n\} \) converges strongly to \(x^* \in F \).

More recently motivated by Kim and Xu[4], Yao et.al[12], X.L.Qin et.al[8], Ming Tian and Xin Jin[10] introduced a new composite algorithm

\[
x_0 = x \in K
\]

\[
y_n = P_{K} \{ \beta_n x_n + (1- \beta_n) T x_n \}
\]

\[
x_{n+1} = [I - \alpha_n (\mu F - g)] y_n, \quad \forall n \geq 0.
\]

where \(T \) is a k-strictly pseudo-contraction from \(K \) onto \(H \), \(f \) is self contraction on \(K \) such that \(\| f(x) - f(y) \| \leq \alpha \| x - y \| \) for all \(x, y \in K \) and \(F \) is k-Lipschitzian and \(\eta \)-strongly monotone operator on \(K \). \(\{\alpha_n\} \text{ and } \{\beta_n\} \) are sequences in \([0,1]\) under some certain approximate assumptions. Recently Qingqing et.al[2] construct a three step iteration method (as follows) and obtained the results motivated by Yao et.al[13], Tang et.al[9] and Habtu zegeye et.al[14]. The iteration format is:

\[
z_n = (1 - \gamma_n) x_n + \gamma_n T_n x_n,
\]

\[
y_n = (1 - \beta_n) x_n + \beta_n T_n z_n,
\]

\[
x_{n+1} = (1 - \alpha_n) x_n + \alpha_n T_n y_n
\]

(1.6)
\[x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T_n y_n, \]

where \(\{T_n\} \) be a countable family of uniformly closed and uniformly Lipschitz pseudocontractive mappings.

II. PROPOSED ALGORITHM

In the present paper motivated by Tang et.al.[9], Habtu et.al.[14], Ming Tian and Xin Jin[10] and Qingqing et.al.[02], we introduce a new composite algorithm:

\[
\begin{align*}
z_n &= (1 - \gamma_n)x_n + \gamma_n T_n^* x_n, \\
y_n &= (1 - \beta_n)x_n + \beta_n T_n z_n, \\
x_{n+1} &= [I - \alpha_n(\mu f - gf)]T_n y_n
\end{align*}
\]

where \(\{T_n\}_{n=1}^\infty : C \to C \) be a family of uniformly Lipschitz pseudo-contractive mappings and \(C \) be a closed convex subset of real Hilbert space \(H \), \(f \) is a self contraction on \(C \) such that

\[\| f(x) - f(y) \| \leq \alpha \| x - y \| \quad \text{for all } x, y \in C \quad \text{and} \quad F \text{ is } k\text{-Lipschitzian and } \eta \text{-strongly monotone operator} \]

on \(C \), \(\{\alpha_n\} \) and \(\{\beta_n\} \) are sequences in \([0,1]\).

Under some certain approximate assumptions on \(\{\alpha_n\} \) and \(\{\beta_n\} \), we obtain the convergence theorem for a countable family of pseudo-contractive mappings provided that the interior of the common fixed points is nonempty. No compact-ness assumption is imposed either on one of the mappings or on \(C \).

III. PRELIMINARIES

Let \(C \) be a nonempty subset of a real Hilbert space \(H \). The mapping \(T : C \to H \) is called Lipshitz or Lipshitz continuous if there exists \(L > 0 \) such that

\[\| Tx - Ty \| \leq L \| x - y \|, \quad \forall \ x, y \in C \]

(2.1)

If \(L = 1 \), then \(T \) is called non-expansive; and if \(L < 1 \), then \(T \) is called contraction. It is easy to see that from eq. (2.1) that every contraction mapping is non-expansive and every nonexpansive mapping is Lipschitz.

A countable family of \(\{T_n\}_{n=1}^\infty : C \to H \) is called uniformly Lipschitz with Lipschitz constant \(L_n > 0 \), \(n \geq 1 \), if there exists \(0 < L = \sup_{n \geq 1} L_n \) such that

\[\| T_n x - T_n y \| \leq L \| x - y \|, \quad \forall \ x, y \in C, \quad n \geq 1. \]

A countable family of mappings \(\{T_n\}_{n=1}^\infty : C \to H \) is called uniformly closed if \(x_n \to x^* \) and

\[\| x_n - T_n x_n \| \to 0 \implies x^* \in \bigcap_{n=1}^\infty F(T_n). \]

In the sequel we need the following lemma:

Lemma 2.1. Assume that \(\{a_n\} \) is a sequence of nonnegative real numbers such that

\[a_{n+1} = (1 - \gamma_n)a_n + \gamma_n \delta_n, \quad n \geq 0, \]

where \(\{\gamma_n\} \) is a sequence in \((0,1)\), and \(\{\delta_n\} \) is a sequence in \(\mathbb{R} \) such that

(i) \(\sum_{n=1}^\infty \gamma_n = \infty \)

(ii) \(\limsup_{n \to \infty} \delta_n \leq 0 \) or \(\sum_{n=0}^\infty \| \gamma_n \delta_n \| < \infty \).

Then \(\lim_{n \to \infty} a_n = 0 \).

IV. MAIN RESULT

Theorem 3.1. Let \(C \) be a non-empty closed and convex subset of a real Hilbert space \(H \), let \(\{T_n\}_{n=1}^\infty : C \to H \) be a countable family of uniformly closed and uniformly Lipschitz pseudo-contractive
mappings with Lipschitzian constants \(L_n \), let \(0 < L = \sup_{n \in \mathbb{N}} L_n < 1 \), with the interior \(A = \bigcap_{n=1}^{\infty} F(T_n) \) is non-empty. Assume that \(f : C \to C \) is a contraction with coefficient \(0 \leq \alpha < 1 \). Let \(F : C \to C \) be \(k \)-Lipschitzian continuous and \(\eta \)-strongly monotone operator with \(k > 0 \) and \(\eta > 0 \). Let \(0 < \mu < \frac{2\eta}{k^2} \) and

\[
\frac{\tau - 1}{\alpha} < \gamma < \frac{\mu(\eta - \frac{\mu k^2}{2})}{\alpha} = \frac{\tau}{\alpha}.
\]

Let \(\{x_n\} \) be a sequence generated from an arbitrary \(x_0 \in C \) by the following algorithm:

\[
z_n = (1 - \gamma_n)x_n + \gamma_n T_n x_n,
\]

\[
y_n = (1 - \beta_n)x_n + \beta_n T_n z_n,
\]

\[
x_{n+1} = [I - \alpha_n (\mu F - \gamma f)] T_n y_n.
\]

(3.1) where \(\{\alpha_n\}, \{\beta_n\} \) and \(\{\gamma_n\} \subset (0,1) \) satisfying the condition \(\lim_{n \to \infty} \alpha_n = 0 \), \(\sum_{n=1}^{\infty} \alpha_n = \infty \).

Then \(\{x_n\} \) converges strongly to \(x^* \in A \).

Proof. Suppose that \(p \in A \). Then from (3.1), we have

\[
\| y_n - p \| = \| (1 - \beta_n)x_n + \beta_n T_n z_n - p \|
\]

\[
= \| (1 - \beta_n)(x_n - p) + \beta_n (T_n z_n - p) \|
\]

\[
\leq (1 - \beta_n) \| x_n - p \| + \beta_n \| (T_n z_n - p) \|
\]

\[
\leq (1 - \beta_n) \| x_n - p \| + \beta_n \| (T_n z_n - T_n p) \|
\]

\[
\leq (1 - \beta_n) \| x_n - p \| + \beta_n L \| z_n - p \| \quad \ldots
\]

(3.2)

Now

\[
z_n - p = \| (1 - \gamma_n)x_n + \gamma_n T_n x_n - p \|
\]

\[
= \| (1 - \gamma_n)(x_n - p) + \gamma_n (T_n x_n - T_n p) \|
\]

\[
\leq (1 - \gamma_n) \| x_n - p \| + \gamma_n \| (x_n - T_n p) \|
\]

\[
\leq (1 - \gamma_n) \| x_n - p \| + \gamma_n \| x_n - p \|
\]

\[
\| z_n - p \| \leq (1 + \gamma_n L - \gamma_n) \| x_n - p \|
\]

\[
\| z_n - p \| \leq \| x_n - p \| \quad \ldots
\]

(3.3)

Also by (3.2) & (3.3)

\[
\| y_n - p \| \leq (1 + \beta_n L - \beta_n) \| x_n - p \|
\]

\[
\| y_n - p \| \leq \| x_n - p \| \quad \ldots
\]

(3.4)

Again

\[
\| x_{n+1} - p \| = \| [I - \alpha_n (\mu F - \gamma f)] T_n y_n - p \|
\]
\[
\leq \left\| (I - \alpha_n p F) T_n y_n - (I - \alpha_n \mu F) p \right\| + \alpha_n \left\| f(T_n y_n) - \mu F(p) \right\|
\]
\[
\leq \left\| (I - \alpha_n p F) (T_n y_n - p) \right\| + \alpha_n \left\| f(T_n y_n) - (I - \alpha_n \mu F) p \right\| + \alpha_n \left\| f(p) - \mu F(p) \right\|
\]
\[
\leq [1 - \alpha_n (\tau - \gamma \alpha)]\left\| T_n y_n - p \right\| + \alpha_n \left\| f(p) - \mu F(p) \right\|
\]
\[
\leq \left\| \alpha n (\tau - \gamma \alpha) \right\| T_n y_n - p \right\| + \alpha_n \left\| f(p) - \mu F(p) \right\|
\]
\[
\left\| x_{n+1} - p \right\| \leq \left\| \alpha n (\tau - \gamma \alpha) \right\| \left\| x_n - p \right\| + \alpha_n \left\| f(p) - \mu F(p) \right\|
\]

By induction, we have
\[
\left\| x_n - p \right\| \leq \max \left\{ \alpha n (\tau - \gamma \alpha) \right\} \left\| x_0 - p \right\| \quad \forall n \geq 0;
\]

Hence \(\{x_n\}\) is bounded, so \(\{y_n\}\) and \(\{z_n\}\) are bounded. Also \(\{T_n x_n\}\), \(\{T_n y_n\}\) and \(\{T_n z_n\}\) are bounded.

Further, we shall show that \(\{x_n\}\) is Cauchy sequence.

Consider
\[
\left\| x_{n+2} - x_{n+1} \right\| = \left\| \left(I - \alpha_n (\mu F - f) \right) T_{n+1} y_{n+1} - \left(I - \alpha_n (\mu F - f) \right) T_n y_n \right\|
\]
\[
= \left\| \left(I - \alpha_n p F \right) (T_{n+1} y_{n+1} - T_n y_n) + (\alpha_n - \alpha_{n+1}) (\mu F(T_n y_n) - f(T_n y_n)) + \gamma \alpha_{n+1} (f(T_{n+1} y_{n+1}) - f(T_n y_n)) \right\|
\]

\[
\leq \left\| \alpha_n - \alpha_{n+1} \right\| \left\| \mu F(T_n y_n) - f(T_n y_n) \right\| + \alpha_n \alpha_{n+1} \left\| f(T_{n+1} y_{n+1}) - f(T_n y_n) \right\|
\]

(3.5)

Now
\[
\left\| T_{n+1} y_{n+1} - T_n y_n \right\| \leq \left\| T_{n+1} y_{n+1} - T_{n+1} y_n \right\| + \left\| T_{n+1} y_n - T_n y_n \right\|
\]
\[
\left\| T_{n+1} y_n - T_n y_n \right\| \leq L \left\| y_{n+1} - y_n \right\| + \left\| T_{n+1} y_n \right\| + \left\| T_n y_n \right\|
\]

(3.6)

Again
\[
\left\| y_{n+1} - y_n \right\| = \left\| (1 - \beta_n) x_{n+1} + \beta_n T_{n+1} z_{n+1} - \{1 - \beta_n\} x_n + \beta_n T_n z_n \right\|
\]
\[
\left\| y_{n+1} - y_n \right\| = \left\| (x_{n+1} - x_n) + \beta_n (T_{n+1} z_{n+1} - x_{n+1}) - \beta_n (T_n z_n - x_n) \right\|
\]

(3.7)

By using (3.6) & (3.7), we have
\[
\left\| T_{n+1} y_{n+1} - T_n y_n \right\| \leq L \left\| x_{n+1} - x_n \right\| + \beta_n \left\| T_{n+1} z_{n+1} - x_{n+1} \right\| - \beta_n \left\| T_n z_n - x_n \right\|
\]
\[
\left\| T_{n+1} y_{n+1} - T_n y_n \right\| \leq L \left\| x_{n+1} - x_n \right\| + \beta_n \left\| T_{n+1} z_{n+1} - x_{n+1} \right\| - \beta_n \left\| T_n z_n - x_n \right\|
\]

... (3.8)

By using (3.5) & (3.8), we have
\[
\left\| x_{n+2} - x_{n+1} \right\| \leq L \left[1 - \alpha_{n+1} (\tau - \gamma \alpha) \right] \left\| x_{n+1} - x_n \right\| + \left[1 - \alpha_{n+1} (\tau - \gamma \alpha) \right] \left\| L \beta_n \right\| \left\| T_{n+1} z_{n+1} - x_{n+1} \right\| + \beta_n \left\| T_n z_n - x_n \right\|
\]
\[
+ \left\| T_{n+1} y_n \right\| + \left\| T_n y_n \right\| + \left\| x_{n+1} - x_n \right\| + \left\| \alpha_n - \alpha_{n+1} \right\| \left\| \mu F(T_n y_n) - f(T_n y_n) \right\|
\]

(3.9)

Let \(M\) be an appropriate constant such that
So by using condition (i) and Lemma (2.1), we have

\[\| x_{n+1} - x_n \| \to 0. \]

Therefore, we obtain that \(\{ x_n \} \) is a Cauchy Sequence. Since \(C \) is closed subset of \(H \), there exists \(x^* \in C \) such that \(x_n \to x^* \).

(3.10)

Next we show that \(\| x_n - T_n x_n \| \to 0. \)

From condition (3.1)

\[
\begin{align*}
\gamma_n \| T_n x_n - x_n \| & = \| z_n - x_n \|, \\
\gamma_n \| T_n x_n - x_n \| & \leq \| z_n - x_{n+1} \| + \| x_{n+1} - x_n \|.
\end{align*}
\]

By using (3.3), we have

\[
\gamma_n \| T_n x_n - x_n \| \leq \| x_n - x_{n+1} \| + \| x_{n+1} - x_n \| \to 0.
\]

Thus

\[\| x_n - T_n x_n \| \to 0 \quad \ldots \]

(3.11)

Since \(\{ T_n \}_{n=1}^{\infty} \) are uniformly closed, then from (3.10) and (3.11), we obtain that \(x^* \in \bigcap_{n=1}^{\infty} F(T_n) = A \). The proof is complete.

REFERENCES