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Abstract-   Sorting is among the most fundamental and well-studied problems within computer science and a core step of 

many algorithms. With the advancement in multi-core architectures many parallel sorting algorithms have been 

investigated which are implemented without a need for building interconnected machines. Present architectures have 2, 4, 

or 8 cores on a single die which demonstrates the benefits of parallelism at the chip level. In this paper, a comparative 

analysis of performance of three different types of sorting algorithms viz. merge sort, 3-way merge sort and parallel merge 

sort is presented. The merge sort algorithm to sort a sequence of n elements is based on divide and conquers approach of 

solving problems. The 3-way merge sort is also a sorting algorithm which follows divide and conquer approach and is an 

extension of simple merge sort.  The comparative analysis is based on comparing average sorting time in parallel sorting 

over merge sort and 3-way merge sort. The time complexity for each sorting algorithm will also be mentioned and 

analyzed. 

Keywords – Algorithm, merge sort, 3-way merge sort, and parallel sorting algorithms, parallel merge sort, performance 

analysis, multi core.

I. INTRODUCTION 

Sorting is one of the core computational algorithms used in many scientific and engineering applications. All sorting 

algorithms are problem specific means they work well on some specific problem and do not work well for all the 

problems. Some sorting algorithms are applied to small number of elements, some sorting algorithms are suitable for 

floating point numbers, some are fit for specific range, some sorting algorithms are used for large number of data, 

and some are used if the list has repeated values. We sort data either in numerical order or lexicographical, sorting 

numerical value either in increasing order or decreasing order and alphabetical value like addressee key. Many 

sequential sorting algorithms consume O (nlogn) time to sort n keys [1]. 

Sorting [3, 4] is defined as the operation of arranging an unordered collection of keys or elements into 

monotonically increasing (or decreasing) order. Specifically, S= {a1, a2 ………….an} be a sequence of n elements in 

random order; sorting transforms S into monotonically increasing sequence S’= {a1’, a2’…………… an’} such that 

ai’  aj’ for 1  i  j  n, and S’ is a permutation of S.  

Sorting has two different meanings ordering and categorizing, ordering means to order the list of same items and 

categorizing means grouping and labeling the same type of items [2]. 

Sequential sorting algorithms are classified into two categories. The first category, "distribution sort", is based 

on distributing the unsorted data items to multiple intermediate structures which are then collected and stored into a 

single sorted list. The second one, "comparison sort", is based on comparing the data items to find the correct 

relative order [3].We focus on comparison based sorting algorithms. These algorithms use various approaches in 

sorting such as exchange, partition, and merge. The exchange approach repeats exchanging adjacent data items to 

produce the sorted list as in case of bubble sort [4]. The partitioning approach is a "divide and conquer" strategy 

based on dividing the unsorted list into two sub-lists according to a pivot elements selected from the list of keys. The 

two sub-lists are sorted and then combined producing the sorted list as in case of quick sort [5]. 

Merge sort approach is also a divide and conquer strategy that does not depend on a pivot element in 

partitioning process. The approach repeatedly divides the original list into sub-lists until the sub-lists have only one 

data item. Then these elements are merged together given the sorted list as in case of merge sort [6, 7]. Merge sort is 

frequently employed in many applications.  
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A sorting algorithm [12] is said to be in-place whenever it does sorting with the use of constant extra memory. 

In this case, the amount of extra memory required to implement the algorithm does not depend on the number of 

keys in the input list. In addition, the sorting algorithm is stable if it keeps the indices of a sequence of equal values 

in the input list (in any of the input list) in sorted order at the end of sorting. Otherwise, the algorithm is said to be 

unstable. 

In designing parallel sorting algorithms, the fundamental issue is to collectively sort data owned by individual 

processors in such a way that it utilizes all processing units doing sorting work, while also minimizing the costs of 

redistribution of keys across processors. In parallel sorting algorithms there are two places where the input and the 

sorted sequences can reside. They may be stored on only one of the processor, or they may be distributed among the 

processors. Parallel merge sort on PRAM model was reported to have fast execution time of     O (logN) for n input 

keys using N processors [8].  

Instead of using multiprocessors to achieve parallelism, multi-core architectures are used to implement and 

executes parallelized applications.  

II. MERGE SORT ALGORITHM 

Merge sort [12] is a standard sorting strategy that can be implemented in various ways: on lists, in a recursive top-

down fashion or in an iterative bottom-up fashion. Till recently, the analysis was largely confined to dominating 

terms, the average-case complexity (i.e., number of key comparisons) being nlog2n + O (n) for all versions of the 

algorithm. Merge sort is an efficient 2-way divide-and-conquer sorting algorithm as it divides the original sequence 

of keys into two subsequences until each subsequence contains single element each. Because merge-sort is easier to 

understand than other useful divide-and-conquer methods, it is often considered to be a typical representative of 

such methods, and frequently used to introduce the divide-and-conquer approach itself [9].  

Intuitively, merge sort operates on sequence of n objects as follows:  

If n > 1, divide the sequence into two subsequences of about half the size each;  

apply merge sort on each subsequence;  

Merge the two sorted subsequences from step 2 into one sorted array.  

Figure 1.  Graphical representation of the Merge sort algorithm 

Pseudo Code:  

Input: Array Arr [low...high], indices low, mid, high (low  mid <high). Arr [low...high] is the array to be divided. 

Arr [low] is the beginning element and Arr [high] is the ending element  

Output: Array Arr [low...high] in ascending order 

.
private void MergeSort(T[] to, T[] temp, int low, int 

high) 

{

if (low >= high) 

return; 

var mid = (low + high) / 2; 

MergeSort (temp, to, low, mid); 

MergeSort (temp, to, mid + 1, high); 

Merge (to, temp, low, mid, mid + 1, high, low); 

}
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Figure 2.  Pseudo code for Merge Sort function 

For small arrays, some implementations switch from recursive merge sort to non-recursive methods, such as 

insertion sort – an approach that is known to improve execution time.  

Complexity Analysis 

The average time complexity of merge sort is O(n log2 n) [10], the same as quick sort and heap sort. In addition, 

best-case complexity of merge sort is only O(n), because if the array is already sorted, the merge operation perform 

only O(n) comparisons; this is better than best case complexity of both quick sort and heap sort. The worst case 

complexity of merge sort is O(n log2 n) [10], which is the same as heap sort and better than quick sort. However, 

classical merge sort uses an additional memory of n elements for its merge operation (the same as quick sort), while 

heap sort is an in-place method with no additional memory requirements.  

The average/best/worst asymptotic complexity of merge sort is at least as good as the corresponding 

average/best/worst asymptotic complexity of heap sort and quick sort; despite of this, merge sort is often considered 

to be slower than the other two in practical implementations. On the positive side, merge sort is a stable sort method, 

in contrast to quick sort and heap sort, which fail to maintain the relative order of equal objects. The practical 

performance of merge sort is known to improve with recursion removal and cache memory utilization [11]. 

For simplicity, assume that n is a power of 2  and each divide step yields two subsequences, both of size 

approximately n/2 [9]. 

The base case occurs when n = 1. 

When n  2, following are the merge sort steps: 

Divide: Just compute mid as the average of low and high  

Therefore, D (n) =  (1). 

Conquer: Recursively solve 2 subsequences, each of size n/2 

i.e. 2T (n/2). 

Combine: MERGE on an n-element sub array takes  (n) time Therefore, C(n) =  (n). 

As the general form of recursion is: 

D(n) :  cost of dividing the problem into sub-problems. 

C(n) : cost of combining sub-solutions into original solution.  

a: Number of sub arrays in which the original array is to be divided. 

b: size of each sub array. 

The recurrence relation for merge sort reduces to: 

if n>1 ………………….(i)

                         if n=1(Base Case)

Equation (i) can also be written as   for some constant c.   

The recursion tree looks like this. 
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Figure 3.  Recursion tree for merge sort algorithm 

Therefore, the running time for merge sort is:  

     i.e.  T(n) =�(nlog2n)

III. 3-WAY MERGE SORT

3-way merge sort is an efficient divide and conquer sorting algorithm. It is an extension of simple merge sort 

algorithm. The sequence is divided into 3 equally sized subsequences and the generated sub-lists are further divided 

until each number is obtained individually. The numbers are then merged together as pairs to form sorted 

subsequences of length 3. The subsequences are then merged subsequently until the whole sequence is constructed.  

3-way merge sort operates on a sequence of n objects as follows:  

If n > 1, divide the array into three sub-arrays of about one-third the size each;  

apply merge sort on each sub- array;  

Merge the three sorted sub-arrays from step 2 into one sorted array.

Figure 4.  Graphical representation of the 3-way Merge sort algorithm 

Pseudo Code 

Input: Array Arr [low...high], indices low, mid1, mid2, high (low  mid1<mid2 <high). Arr [low...high] is the array 

to be divided. Arr [low] is the beginning element and Arr [high] is the ending element  

Output: Array Arr [low...high] in ascending order. 
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Figure 5.  Pseudo code for 3-way Merge Sort function 

Complexity Analysis 

The average complexity of 3-way merge sort is same as that of basic merge sort i.e. of O(n log2n), the same as 

quick sort and heap sort. But the actual average running time of 3-way merge sort is less due to the reduced height 

(log3n) of recursion tree. 3-way merge sort performs better for some extent due to reduced number of calls to 

ThreeWayMergeSort function. 

For simplicity, assume that each divide step yields three sub-problems, each of size exactly n/3. 

The base case occurs when n = 1. 

When n  3, following are the 3 way-merge sort steps: 

Divide: Just compute q as the average of p and r. Therefore, D (n) =  (1). 

Conquer: Recursively solve 3 sub-problems, each of size n/3 

i.e. 3T(n/3). 

Combine: MERGE on an n-element sub array takes (n) time Therefore, C(n) = (n). 

Here a and b has value 3 as the array is partitioned into three sub arrays and each has size n/3. Therefore the 

recurrence relation for 3-way merge sort is: 

if n>1 ………………….(i)

                         if n=1(Base Case)

Equation (i) can also be written as   for some constant c.   

The recursion tree looks like this. 

private void ThreeWayMergeSort (T[] to, T[] temp, int low, int 

high) 

{

if (low >= high) 

return; 

var mid1 = (high-low) / 3; 

var mid2=2*mid1; 

ThreeWayMergeSort (temp, to, low, mid1); 

ThreeWayMergeSort (temp, to, mid1 + 1, mid2); 

ThreeWayMergeSort (temp, to, mid2 + 1, high); 

ThreeWayMerge (to, temp, low, mid1, mid2, high); 

}
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Figure 6.  Recursion tree for 3-way merge sort algorithm 

Therefore, the running time for merge sort is:           

i.e.  T(n) =�(nlog3n)

IV. PARALLEL MERGE SORT 

Advances in multi-core architectures are showing great promise at demonstrating the benefits of parallelism at 

the chip level. Current architectures have 2, 4, or 8 cores on a single die, but industry insiders are predicting orders 

of magnitude larger numbers of cores in the not too distance future [13, 14, 15]. 

Chip Multiprocessors (CMP) [16] is a multithreaded architecture, which integrates more than one processor on 

a single chip. In this architecture, each processor has its own L1 cache. The L2 cache and the bus interface are 

shared among processors. Intel Core 2 Duo [17] is an example of such architecture; it has two processors on a single 

chip, each of them has an L1 cache, and both of them are sharing the L2 cache 

These architectures not only provide a facility for implementing and running the parallelized applications 

without a need for building interconnected machines but also enhance the data management operations among 

parallel processes due to the reliable utilization of hardware resources 

Multi-core architectures are designed to provide a high performance feature on a single chip since that they do 

require neither a complex system nor increased power requirements [18] 

On the other hand, many parameters such as latency, bandwidth, caches and even the system software [19] 

affect the performance of such systems. These challenges should to be studied to gain the objective of these 

architectures 

In parallel merge sort a large array is partitioned into equal parts and efficient sorting functions is applied on 

sub arrays in parallel, then parallel execution results in faster processing. It takes less time to merge all sorted arrays 

that have been processed quickly in separate thread in parallel. 

Most basic construct for task parallelism is: Parallel.Invoke (DoLeft, DoRight); 

It executes the methods DoLeft and DoRight in parallel, and waits for both of them to finish. Invoke itself is a 

synchronous method, it will only return when it has executed all tasks. This method provides a simple way in which 

a number of tasks may be created and executed in parallel. As with other methods in the Parallel Task Library, 

Parallel.Invoke provides potential parallelism. If no benefit can be gained by creating multiple threads of execution 

the tasks will run sequentially. 

Pseudo code 

Input: Array Arr [low...high], indices low and high (low  mid <high). Arr [low...high] is the array to be divided. 

Arr [low] is the beginning element and Arr [high] is the ending element  

Output: Array Arr [low...high] in ascending order 
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Figure 7.  Pseudo code for Parallel Merge Sort function 

Parallel.Invoke construct executes the Parallel merge sort on two sub arrays, partitioned around mid element in a 

parallel manner. Merging of two sub arrays can also be performed by invoking Parallel.Invoke for parallel execution 

which is as follows: 

Figure 8.  Pseudo code for Parallel Merge Sort function 

V. CASE STUDY 

Consider a sequence S, consisting of 8 unordered data elements given as:  

S= {91, 75, 64, 15, 21, 8, 88, 54} 

This data set is sorted by the two, above mentioned sorting algorithms viz. merge sort, three-way merge sort. 

5.1 Sorting by Merge sort 
Perform the steps as mentioned in the pseudo code for merge sort to sort the data set as follows:  

private void ParallelMergeSort(T[] to, T[] temp, int low, int high, int 

depth) 

{

if (high - low + 1 <= SEQUENTIAL_THRESHOLD || depth <= 0) 

  { 

     MergeSort (to, temp, low, high); 

     return; 

    } 

  var mid = (low + high) / 2; 

  depth--; 

  Parallel.Invoke ( 

  () => ParallelMergeSort (temp, to, low, mid, depth), 

  () => ParallelMergeSort (temp, to, mid + 1, high, depth) 

  ); 

  ParallelMerge (to, temp, low, mid, mid + 1, high, low, depth);   

}

private void ParallelMerge(T[] to, T[] temp, int lowX, int highX, int lowY, int highY, int 

lowTo, int depth) 

 { 

  …………………… 

  ……...……………. 

if (lengthX < lengthY) 

{

ParallelMerge(to, temp, lowY, highY, lowX, highX, lowTo, depth); 

return; 

}

  ……………………. 

  ……………………. 

Parallel.Invoke( 

() => ParallelMerge(to, temp, lowX, midX - 1, lowY, midY - 1, 

lowTo, depth), 

() => ParallelMerge(to, temp, midX + 1, highX, midY, highY, midTo + 1, depth) 

);

}
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Figure 9.  Sorting by Merge Sort 

Firstly, the input sequence is partitioned into two subsequences of equal size and the procedure repeats it 

recursively until each subsequence contains a single element. Then the subsequences are merged together stepwise 

until sorted sequence is obtained.

5.2  Sorting by 3-way merge sort 
Perform the steps as mentioned in the pseudo code for 3-way merge sort to sort the data set as follows: 

Figure 10.  Sorting by Merge Sort 

Firstly, the input sequence is partitioned into three subsequences of equal size and the procedure repeats it 

recursively until each subsequence contains a single element. Then the subsequences are merged together stepwise 

until sorted sequence is obtained. 

It is observed that the height of the tree formed is less as compared to simple merge sort which reduces the average 

running time to some extent. 3-way performs better as number of input keys increases. 

VI. COMPARISON OF RESULTS AND DISCUSSION 
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The performance of above mentioned algorithms can be analyzed by considering the average running time on 2-

chip processor. Table1 shows the average running time (in seconds) of merge sort, 3-way merge sort and parallel 

merge sort with respect to increasing number of input values. It shows that parallel merge sort using Parallel.Invoke 

perform better over merge sort and 3-way merge sort, due to the use of parallelism and proper utilization of both 

cores of CPU.  

Table1. Average Running Time of Merge sort, 3-way Merge Sort and Parallel Merge Sort  

Input Size 
(n) 

Average Running Time(ms) 

Merge sort 
3-way Merge 

Sort
Parallel Merge 

Sort 

0.1 X 106 0.0592 0.0556 0.0419 

3 X 106 1.5456 1.4745 0.9753 

6 X 106 3.7465 3.5561 2.2787 

9 X 106 5.7134 5.2987 3.3112 

12 X 106 7.8280 7.3174 4.5527 

15 X 106 9.8671 9.1287 5.8604 

18 X 106 11.9538 11.0550 6.9699 

21 X 106 14.0710 12.8127 8.5667 

24 X 106 16.2288 14.8221 9.4809 

27 X 106 18.3616 16.8638 10.7920 

Figure 11 shows that the parallel merge sort performs better over merge sort as the tasks get executed in a 

parallel fashion on multiple cores.  

Figure 11.  Merge Sort vs. Parallel Merge Sort 
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Fig. 12 shows the better performance of parallel merge sort over 3-way merge sort. 3-way merge sort has higher 

average running time than parallel merge sort due to the absence of parallelism. 

Figure 12. 3-way Merge Sort vs. Parallel Merge Sort 

Figure 13 shows the comparison of average running time of all three sorting algorithms viz. merge sort, 3-way 

merge sort and parallel merge sort with increasing number of input size i.e. n. Figure shows that the parallel merge 

sort is best of all three sorting algorithms due to the use of parallelism.

Figure 13. Merge Sort, 3-way Merge Sort and Parallel Merge Sort 

VII.CONCLUSION 

In this paper we considered the sorting problem for large data sets, and three sorting algorithms are compared 

successfully. The effect of the number of cores on the performance of merge sort has been theoretically and 

experimentally studied.  
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The basis of analysis is the average running time on double core processor. It is observed that parallel sorting 

algorithm i.e. parallel merge sort performs well in all respects in comparison to sequential merge sort and 3-way 

merge sort. The better performance is obvious because parallel sorting algorithm take the advantage of parallelism to 

reduce the average running time. In future, same analysis can be performed with parallel sorting algorithms (parallel 

quick sort and hyperquicksort) and parallel sorting by regular sampling algorithm (PSRS) for wide variety of MIMD 

architectures and the processors with more than two cores.   
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