
 
 
 
 
 
 
 

A REVIEW: BUG LOCALIZATION USING 
ANT COLONY OPTIMIZATION  
 
Birinderjit Singh Kalyan1 
 
 
 
 
 
 
 
 

I. INTRODUCTION  
Bug Localization is a way of finding exactly the location of bugs in the program. It is a 
process of identifying the specific location or region of source code at various granularity 
levels such as the directory path, file, method or statement that is faulty and needs to be 
modified to repair the defect. Bug localization is a routine task in software maintenance. A 
technique for Bug localization based on a character n-gram based Information Retrieval (IR) 
model framed the problem of bug localization as a relevant document search task for a given 
query and investigate the application of character-level n-gram based textual features derived 
from bug reports and source-code file attributes. The IR models implemented and evaluate its 
performance on dataset downloaded from two popular open-source projects (JBoss and 
Apache). After conducting a series of experiments to validate this hypothesis and present 
evidences to demonstrate that the approach is effective. The accuracy of the approach is 
measured in terms of the standard and commonly used SCORE and MAP (Mean Average 
Precision) metrics for the task of bug localization. 
An IR system typically begins with three-step preprocessing: text normalization, stop word 
removal, and stemming. Normalization involves removing punctuation, performing case-
folding, tokenizing terms, etc., ultimately defining the initial vocabulary in which queries and 
documents will be represented. Next, a set of extraneous terms identified in a stop word list 
(e.g., “to”, “the”, “be”, etc.) are filtered out in order to improve efficiency and reduce 
spurious matches. Finally, stemming conflates variants of the same underlying term (e.g., 
“ran”, “running”, “run”) to improve term matching between query and document. 
The success of IR-based bug localization is dependent on effectively matching the bug report 
to source files needing to be fixed. As discussed in Section II, even preprocessing issues can 
significantly impact IR accuracy. The classic IR challenge lies in effectively recognizing 

                                                        
1 Department of Electrical and Electronics Enginnering Chandigarh University, Ghauran 

International Journal of Latest Trends in Engineering and Technology  
Vol.(7)Issue(4), pp.170-173 

DOI: http://dx.doi.org/10.21172/1.74.022 
e-ISSN:2278-621X 

Abstract— Bug localization is the task to locate the source code entities which are relevant from the bug 
report. Manual bug localization is a time consuming task as developers has to go through thousands of 
source code entities to locate the relevant one. Current research provides methods as various IR techniques, 
classifiers, combination of classifiers to improve bug localization. Due to the increasing size and 
complexity of current software applications, automated solutions for bug localization can significantly 
reduce human effort and software maintenance cost. This can be done with the help of an Ant Colony 
Optimization Technique. 

Keywords— Bug Localization, Information Retrieval (IR), Ant Colony Optimization (ACO), Pheromone 
Trails. 



A Review: Bug Localization Using Ant Colony Optimization               171 

important terms in the query and document, and assigning each greater weight for 
matching.[3] 
Ant Colony Optimization: ACO technique comes under the swarm intelligence [Daniel 
Markel and Martin Middendorf. It is used in various dynamic applications. Ants started from 
nest in the search of food which is away from nest. Each ant follow different path to reach to 
the food source and secrete pheromone liquid at the path as a mark to attract other ants. Ants 
choose the path depending upon the pheromone and path is marked after collecting food. So 
at the end shortest path has the highest probability. The act of making trail of pheromone 
liquid is very useful to find out good food source direction. Moreover, ACO deals with a 
process in which decreasing in amount of pheromone deposited on every path by the time is 
known as trail pheromone evaporation. When they complete their search to find out best 
result or to reach final destination, they update their trail to attract other ants. Each 
conspiratorial problem defines its own updating criteria depending on its own local search 
and global search respectively. Ants are able to find shortest path on the basis of pheromone 
information laid on ground by other ants of same colony. Ant searching for food goes for all 
possible trails, but in last chooses the trail with largest deposit pheromone and update 
according to the latest pheromones. There is population of ants in ants system, which is 
working as agent to find out shortest path and communicate with other ants. When reached its 
destination, the direction of path it follow is based upon the amount of pheromone it detects 
and is made by decision probabilistic.  

II. ANT COLONY OPTIMIZATION FLOWCHART (ACO) 
A scheme of an ACO flowchart in figure 1 is given in the following. 
1. Represent the solution space by a construction graph. 
2. Set ACO parameters and initialize pheromone trails. 
3. Generate ant solution from each ants walk on the construction graph  
4. Update pheromone intensities. 
5. Go to step 3, and repeat until convergence or termination conditions are fulfilled. 

The large majorities of these applications are to NP-hard problems; that is, to problems for 
which the best known algorithms that guarantee to identify an optimal solution have 
exponential time worst case complexity. 
The use of such algorithms is often infeasible in practice, and ACO algorithms can be useful 
for quickly finding high-quality solutions. ACO algorithms are based on a parameterized 
probabilistic model the pheromone model, is used to model the chemical pheromone trails. 

 
Figure 1: Flow chart of ACO 

 



Birinderjit Singh Kalyan                                            172 

III. ADVANTAGES OF ANT COLONY OPTIMIZATION 
ACO displays powerful robustness. 
2. It has an advantage of distributed computation which avoids premature convergence. 
3. It is adaptive in nature and can adapt changes easily. 
4. It gives positive feedback which leads to discovery of good solutions. 
5. It can be used in dynamic applications. 
6.To communicate with each other ants use pheromone liquid. 
7. The whole process is done in an organized manner. 
 
IV. DIFFERENT BUG-LOCALIZATION TECHNIQUES 
A) Static Analysis : Static analysis of software program source codes is a kind of formal 
analysis where all possible paths of the source code are explored. This kind of analysis 
strongly depends on the syntax and the semantics of the underlying programming language. 
This kind of analysis is performed without actually executing the program. Some of the 
prominent methods of static analysis are Model Checking [Clarke et al. 1999], Data-Flow 
Analysis and Abstract Interpretation [Cousot and Cousot 1977]. By a straightforward 
reduction of the Halting Problem [Halting Problem 1930] it is possible to prove that (for any 
Turing complete language) finding all possible run-time errors in an arbitrary program (or 
more generally any kind of violation of a specification on the final result of a program) is 
undecidable: there is no mechanical method that can always answer truthfully and faithfully 
whether a given program may or may not exhibit runtime errors. In spite of this inherent 
limitations there are a few tools that implements static analysis based software verification 
method : BLAST [Henzinger et al. 2002], Clang [Lattner 2007] and Microsoft’s SLAM 
Toolkit [Microsoft Research 2010] are among the most prominent and mostly used tools. One 
of the most severe limitation of this method is that it often suffers from capacity limitations as 
reported widely in literature. Intuitively static analysis based methods try to explore all 
possible executions of the program. Since the number of executions is infinite (even for very 
simple and relatively small program), hence static analysis based methods often do not scale. 
In this survey static analysis and related methods are not our prime objective. In the next 
section we introduce statistical analysis based bug localization briefly. 
B) Statistical Analysis :To alleviate the capacity related issues, researchers have studied 
program bug localization methodologies based on dynamic analysis. This methodology has a 
common framework in all of its variants : the program source code is co-executed along with 
a large number of possible test cases and execution traces are dumped. Then, suitable 
machine learning and data mining algorithms are applied to extract out likely invariants and 
possible bug locations in the software program. Clearly, even if a large number of test suites 
are used to generate the trace data, it is still impossible to execute all possible paths in the 
program. However, this makes the problem of invariant generation and bug localization more 
tractable. But obviously it comes for a price; some of the invariants generated may be 
spurious which are true for those test cases but do not hold good in general for the program. 
Also, in case of bug localization it may give rise to false positives. Over the past decades 
several such dynamic trace based software bug localization techniques have been proposed 
by the researchers. Some of those techniques use a hybrid approach where knowledge learned 
from dynamic traces is used to prune significant portion of the state space of static analysis 
making it more tractable. holmes [Chilimbi et al. 2009] is one such method. In some other 
methods, different state-of-the-art data mining algorithms along with rigorous statistical 
analyses are performed over the dynamic traces to locate possible bug locations in the 
program. CBI [Liblit 2007], [Liblit et al. 2005], SOBER [Liu et al. 2005], [Liu et al. 2006] 
and DES [Hu et al. 2008] are some of the prominent statistical analysis based bug localization 
techniques. This survey by no means is as comprehensive as the numerously vast and diverse 
works that have been done in the domain of software bug localization. In this survey paper 



A Review: Bug Localization Using Ant Colony Optimization               173 

we present the main ideas and the mathematical background of the statistical analyses based 
software bug localization approach which has evolved over the past 10 years. 

IV. APPLICATIONS OF ANT COLONY OPTIMZATION 
ACO is used in routing problem i.e. traveling salesman problem, vehicle routing and 
sequential ordering. 
1. It is applied to solve job scheduling problem, project scheduling and applied in multilevel 
framework also. 
2. It is also used to solve many assignment problems like frequency assignment, graph 
coloring and quadratic assignment problem. 
3. ACO is also applied in the field of networking like optical network routing, connection 
oriented routing etc. 
4. It can be used to solve knapsack problem and set covering problems and applied in fuzzy 
systems. 
5. Nearest neighbor node choosing rule can be solved by using ant colony optimization.[2] 
 

V. CONCLUSION 
Selecting a persuasive bug localization methodology generally requires expert knowledge 
regarding the program. Bug Localization is carried out in order to find location of bugs and to 
achieve fault-free program. In this we have discussed Bug localization by n-gram character 
model. We have also discussed about the advantages and workflow of Ant Colony 
Optimization Technique. To render help to the software tester in three aspects – i.e. minimum 
reach time, localization path, and optimal solution. From our observations, we conclude that 
by using Ant colony Optimization technique we can easily localize the shortest path for 
finding a bug and obtain minimum reach time by optimizing the path of a bug.  
 

VI.  REFERENCES 
[1] Ferdian Thug, “Bug Localizer: Integrated tool support for bug localization”[,pp. 767-770, FSE 2014 

Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software 
Engineering, 2014.  

[2] Sujatha .S.R ,Dr.M.Siddappa “A study on efficient localization methods  using swarm intelligence” ISSN 
2320-7345, June 2014. 

[3] Sangeeta Lal and Ashish Sureka, “A Static Technique for Fault Localization Using Character N-Gram 
Based Information Retrieval Model”; Proceedings of ISEC '12, Feb. 22-25, 2012 Kanpur, UP, India. 

[4] Nicholas Giuseppe, James A. Jones, “On the Influence of Multiple Faults on Coverage-Based Fault 
Localization”; ISSTA ’11, July 17–21, 2011, Toronto, ON, Canada. 

[5] S. Rao and A. Kak, “Retrieval from Software Libraries for Bug Localization: A Comparative Study of 
Generic and Composite Text Models,” Proc. Eighth Working Conf. Mining Software Repositories, pp. 43-
52, 2011.  

[6] V.Selvi, Dr.R.Umarani, "Comparative Analysis of Ant Colony and Particle Swarm Optimization 
Techniques”, Volume 5– No.4, , International Journal of Computer Applications (0975 – 8887) August 
2010. 

[7] W. Eric Wong, and Vidroha Debroy, “Software Fault Localization”; IEEE Reliability Society  Annual 
Technology Report 2009. 

[8] Zheng, T. G, Huan, H, & Aaron, Ant Colony System Algorithm for Real-Time Globally Optimal Path 
Planning of Mobile Robots. Acta. Automatica. Sinica, 33(3), 279-285. 2007. 

[9] Dorigo M and Blum C,” Ant colony optimization theory: A survey”, Theoretical Computer Science, 
Volume344, Issues 2-3, November 2005. 

[10] Blum C,” Ant colony optimization: Introduction and recent Trends”, Physics of Life Reviews, Volume 2, 
Issue 4, December 2005. 

[11] Dorigo M and Stutzle T,” Ant Colony Optimization”, MIT Press 2004. 


