
Investigation of Source Code Mining using
Novel Code Mining Parameter Matrix:
Recent State of Art
K Venkata Ramana1 and Dr K Venu Gopala Rao2

I. INTRODUCTION

The software projects without a proper detection technique for defects in developed modules may
lead to software full of problems and not generating desired output mentioned in the required
specification by customer. The requirements are generated during the mutual discussion between
client and the development companies in the initial phases. The software development companies are
always liable to deliver the software with agreed performance. Hence the software companies put lot
of efforts in detecting and resolving the defects in the software. However the detecting and fixing
process of detects is time consuming process and ignoring the defects may lead to malfunctions
ranging from losing a small penny to million dollar loss. Software development companies deal with
defects which are known and predictable and sometimes unknown and unpredictable defects. The
known defects can be deal with pre-planned development strategies and are generally less time
consuming. The known defects will not disturb the cost and time estimations for the project.
However the unknown defects are unpredictable, hence the resolution of those defects also cannot be
pre-defined. Hence the development industries keep huge efforts to deploy multiple prediction
techniques to detect unknown defects for the next modules from the existing defect matrix generated
during the development phases. The early documents have demonstrated the use of software defect
matrix to demonstrate the time complexity, memory requirements and development cost in terms of
time to market. An in depth calculation steps are to be executed to determine the number of defects
in the software module or the complete program. However the recent researches have demonstrated
the use of software defect matrix to form the guidelines for defect detection. The parallel researches
have also demonstrated good classification techniques for defects matrices to focus on one specific
objective and ignore the rest of the matrices for the same objective. The rest of the matrices can also

1 Department of Computer Science & Engineering, Bhoj Reddy Engineering College for Women, Hyderabad, Telangana,
India
2 Department of Computer Science & Engineering, G.Narayanamma Institute of Technology and Science, Hyderabad,
Telangana

International Journal of Latest Trends in Engineering and Technology
Vol.(7)Issue(3), pp. 088-097

DOI: http://dx.doi.org/10.21172/1.73.512
e-ISSN:2278-621X

Abstract— With the recent growing demand for higher accuracy with better control is every
industry and research domains, the desired accuracy without compromising on the quality
assurance policies can be achieved through automation. The automation is solely depended on
software programs or codes to replacement the manual methods. Thus the codes desires to be
quality assured. However the testing for software code quality is a tedious and time consuming
process. Hence to shorten the process various data mining techniques and tools are been deployed
to make timely prediction of the specific pattern of the defects in the code and proceed with the
highly ranked faults. This paper evaluates the various data mining methods and tools for
predicting software defects like violation of standard programming rules, faulty code segment
and wrong programming API usage.
Keywords— Source Code Mining, Rule Violation, Predictive Analysis of Source Code. API
Usage in Code

Investigation of Source Code Mining using Novel Code Mining Parameter Matrix: Recent State of Art 89

be mapped to other objectives present in the process. Here it is to be understood that the objectives
are concerned to quality assurance and defect resolution only.

In the high quality software demand driven world, the timely delivery of the project is also a major
quality demand. Thus various research outcomes of data mining techniques [1] are been deployed to
detect software quality and development productivity. The automatic detection of possible or
existing defects in the code detects the defects and marks those defects in the code. Henceforth, the
developers can generate the test cases to check for those patterned defects and remove multiple
issues from the code easily and quickly.

The majority of the software defects relates to the following faults during the development:
a) Violation of software development rules
b) Violation of source code cloning techniques and
c) Violation or faulty use of software APIs

Firstly, detects violation of software development rules or commonly known as rule mining

techniques. The violation of the software development rules can lead to the major technical and legal
issues and the set of rules are generally unique for each specific development area or company,
making it crucial and major threat. The researchers have demonstrated the successful use of data
mining algorithms to find the rules from existing projects to improve the quality of the software
development in the new project. Those demonstrated techniques help in finding the violation of
source code rules in the new project and reduces the manual efforts to detect the rule violations.

Secondly, cloning of the source code from other existing project is a common practice to reduce
the risk of new defects. Nevertheless, this increases the chance of higher maintainability. The
requirement modifications once implemented in any of the part, the same needs to be reflected in all
cloned parts. Many of the organization developed a strategy of using GitHub for code replication,
which intern increase the change of software code piracy and security.

Thirdly, the application development industry demands external interfaces with third party
applications. Most of the cases the external interfacings with the software codes are done by APIs.
The inclusions of external APIs are not risk free with the consideration of the vulnerable information
available within the software code. Hence, the developers must follow standard security measures to
make the integration secured.

A number of researches made significant outcomes to address these above mentioned issues.
Conversely, it is also to be noted that none of the existing research outcomes address the solutions to
all existing problems through data mining techniques or algorithms or tools. Thus in order to propose
a new approach or tools or algorithm it is important to analyse the existing tools and techniques with
the quality of measurements and predictions using data mining techniques.

Thus this paper proposes two major outcomes as defining a quality matrix for software source
code mining and analyse most of the code mining techniques and tools.

Henceforth, the rest of the paper is organized as in section II, the comprehensive literature survey
is been presented, in section III this paper analyses the software defect matrixes, in section IV this
paper purposes the software code mining parameters or quality matrix, in section V the comparative
study of the source code mining techniques and tools are been analysed, in Section VI the goals for
the further research directions are proposed and in section VII the conclusion is presented.

II. OUTCOMES OF THE PARALLEL RESEARCHES

Multiple parallel outcomes are been made to predict the software defects concerning the quality for
software code development. The defects which affect the software development quality policies are
listed in the introduction of this work. Thus this work analyses the outcomes of the parallel
researches.

Firstly, in case of rule mining techniques to detect the rule extension defects a wide range of
researches are been made. The detection includes rule extension, private edit violation and most
prominently variable – data type violations. The contributions as Engler et al [2] and PR-Miner [3]
for their function rule mining techniques have created the land marks in the research. Also the
contribution of Chronicler [4] and Chang et al [5] for conditional rule mining is also proven to be

 K Venkata Ramana and Dr K Venu Gopala Rao 90

important. Finally the approached MUVI [6] for variable-pairing is also considered to be a
motivation for further research.

Secondly, the cloning of source code leading to high maintainability for up gradations is another
area for focus. The efforts by CCFinder [7] and Dup [8] by using tokenization are notable. Another
approach based on abstract syntax tree [9] PGDs [10], CP-Miner [11] demonstrates the branching of
source code and replication detection.

Lastly, the efforts by many other parallel researchers for API usage fault detection are also to be
considered. The described standard pattern for API inclusion is demonstrated by many researchers
[12 – 17] which also proven to be successful. The work of Michail et al [14] describes the use of
item and association based rule reuse techniques. The work of Sahavechaphan and Claypool [15]
developed, a context sensitive code assistant tool XSnippet for helping the developer for equivalence
measurement of the source codes.

In the next section, this paper describes and analyse the software matrixes.

III. SOFTWARE MATRICES

The software matrices are created for various purposes ranging from describing the characteristics
of the software product to information related to up-gradation to staff information deployed into the
project. Software matrices are classified into major three categories as Product Related Matrix,
Process Related Matrix and finally the Project Related Matrix [16]. In this work we understand
different types and subtypes of these matrices:

A. Product Related Matrix

The product related matrices focuses on the product quality and the level of customer satisfactions.
The matrices are designed to keep the information related to number of defects occurred in the
software and level of customer satisfaction. The predicted information about how long the software
will continue executing before failure is also stored in the matrices. A total of four sub-classifications
are available for use under Product Related Matrix for various different purposes. We understand
their purpose and use here [17]:

1) Matrix for Defect Density: The matrix for software defect density identification is majorly used

for storing information related to number of defects in each software development modules. The
process of calculation is as following, considering the density for defect for any module is 1md

defined as:

1
1

n

i
i

m

d
d

n



, …. Eq 1

Where id denotes each defect in the module and n denotes the number of total number of lines

in the software module. Based on the rate of defects the software product and the development
companies are assured with the Capability Maturity Model CMM. The calculation for Capability
Maturity Model is demonstrated in Table 1.

TABLE I: CAPABILITY MATURITY MODEL MEASUREMENT

Defect Rate CMM Level can be
achieved

Below 0.05 CMM 5
Above 0.05 and Below

0.14
CMM 4

Above 0.14 and Below
0.27

CMM 3

Investigation of Source Code Mining using Novel Code Mining Parameter Matrix: Recent State of Art 91

Above 0.27 and Below
0.44

CMM 2

Above 0.44 and Below
0.75

CMM 1

2) Matrix for Customer Feedback: The software matrix for customer feedback contains the

information related to the reports reported by the customers. This matrix helps to understand and
predict the amount of present and future defects to be addressed for each product or customer.
The calculation for the problems can be calculated as followings, considering the number of
problems as /U MP ,

1 1
/

l l

m m
m m

U M

DP NDP
P

l
 



 

, …. Eq 2

Where DPm and NDPm denote the number of defect problems & number of non-defect

problems per months respectively and l denotes the number of months under license period.

3) Matrix for Customer Satisfaction: The matrix for customer satisfaction is based on the feedback
data generated during the complete process of software development. The factors related to
customer satisfaction are reliability of the software, responsive nature of the software, quality
assurance of the software, applicable empathy of the software and tangibility of the software. The
software development companies assign weightage for each factor considering the organizational
and functional goals for software and each module inside that software [Table – 2].

 TABLE II: SATISFACTION WEIGHTAGE MAPPING

Factors for Satisfaction Assigned
Weightage

Weightage for
each Modules

M
1

M
2

M
3

M
4

Software Reliability 4 3 4 4 5
Responsive Nature 3 4 2 3 3
Quality Assurance 5 4 5 5 4
Software Empathy 4 4 4 4 4
Tangible Nature 3 3 2 2 3

Hence forth the feedback from the customer is been taken on the pre-decided questioner and then

mapped to the feedback weightage. The final result of this process is the overall satisfaction rate or
score.

B. Process Related Matrix

The main objective for software development to develop software which is satisfying all customer
needs and in parallel it is also important to improve the software development process to achieve
higher satisfaction rate during the further development tasks [18]. The software matrix for process
contains information related to multiple factors concerning about the process of development in the
organization. The following sub-categories are used for specific purposes:

1) Machine Testing – Defect Density Matrix: The defect density is measured during the system

testing of the system. The system testing is performed manually or automatically in a
simulated real time environment. The information stored in the defect density matrix is a
nearly corrected correlation of the defects in the real time. Unless the assumptions of the

 K Venkata Ramana and Dr K Venu Gopala Rao 92

production system are massively incorrect, the defect density matrix can generate a good
prediction.

2) Machine Testing – Defect Pattern Matrix: The total defects detected to be rectified are the
overall scenario for the system. This might not be sufficient to predict the number of probable
upcoming defects in the under development modules. Hence another matrix plays a role for
prediction is Defect Pattern Matrix. This matrix denotes and helps in proper prediction of the
defects which may be faced by the development team in under development modules for the
same software product.

3) Defect Resolving Matrix: The detection of the defects is the half way task completion for the
development team. The further task is to correct or resolve the defects. Another matrix called
Defect Resolving or Removal matrix keeps track of the number of defects detected and
resolved in the system. This helps in the identification of testing and resolution team
efficiencies.

4) Effectiveness Matrix during Defect Removal: The input from the Defect Resolving Matrix is
processed to generate the efficiency of Effectiveness Matrix. The effectiveness for each
developed module can be calculated as following, considering mDR is the efficiency for the

module “m” as

100%m
m

m

NDR
DR X

TD
 , …. Eq 3

Where mNDR the number of defects is resolved and mTD is the total number of defects

detected in the module.

C. Maintenance Related Matrix:

After the completion of the development cycle, the software product is delivered to the client.
Thereafter the maintenance process for the software starts including patch releases and corrective
measured based on the customer feedback. Here the information is collected in multiple matrices
to improve the defect resolution and customer satisfaction.

1) Matrix for Backlog Index: The backlog index denotes the ratio for number of defects resolved

and number of defects reported. The formula for calculating the Backlog Index, IB as

following:

m
I

m

DR
B

DD
 , …. Eq 4

Where mDR and mDD are considered as Defects Resolved and Defects Detected in a month

respectively.

2) Matrix for Fix Quality: Another matrix called Fix Quality matrix plays major role in defining

the quality of the developed software delivered to the customer. The Fix Quality matrix
denotes the ratio of number of total number of defects detected and resolved.

In the next section of this paper, the proposed code mining parameter matrix is proposed.

IV. PROPOSED SOURCE CODE MINING MATRIX

This work proposed a set of parameters to form the Code Mining Matrix. This matrix will help in
understanding and proposing further improvements. The matrix consolidates the proposed
parameters for rule based mining; code cloning and API pattern [Table – 3].

Investigation of Source Code Mining using Novel Code Mining Parameter Matrix: Recent State of Art 93

TABLE III PROPOSED SOURCE CODE MINING MATRIX

Mining Type Matrix Parameters and Usage
Parameter Name Details Expected Analysis

Rule – Mining Functions rules The inference of the
functions

Identify the function pairs that
is been inferred

Variable & Data
Types

Variable Correlation Rules Item Set Mining

Dependence Graph Graph based Conditional
Rule Mining

Graph based Mining Analysis

Global Class and
Structural Variables

Variable Correlation
Information

Variable Correlation Analysis

Code Cloning Line_Seq Sequence of Lines Suffix Tree based analysis
Token_Seq Sequence of Tokens Suffix Tree based analysis
Statements The cloning of the source

code
Cloning Analysis

API Usage API signature API method signature Analysis of Signature
Class & Package Sequence graph of the

methods
Analysis of API calls in
sequence

Objects List of Object creations Analysis of Remote method
invocations

In the next section this work lists the short comings of the existing code mining tools.

V. ANALYSIS OF CODE MINING TOOLS

A lot of automation tools are been introduced for code mining as an outcome of continuous
research. However the tools individually are not sufficient to deliver the total analysis as per the
proposed software mining analysis. Hence to understand the short coming this work analyses the
short comings in the existing available tools [Table – 4].

TABLE IV ANALYSIS OF THE EXISTING CODE MINING TOOLS

Tool Name Features and Short Comings of the Existing Tools
Feature Short Comings

Static Analyser Statistical analysis Fixed rule templates, only identify pair
wise programming rules

PR-Miner Item-set mining Does not consider inter-procedural
analysis, data flow and control
relationship

CHRONIC
LER

Frequent subsequence mining Does not take account of data flow or
data dependence

Framework Frequent itemset and subgraph
mining algorithm

Require manual inspection for valid rules
that may miss some instances of rules
during inspection.

MUVI Frequent itemset Mining Only handled variable access directly by
caller functions

Dup Suffix tree based matching Does not detect clone code portions
having different syntax but similar
meaning.

CC-Finder Token comparison Suffix tree
based matching

Does not detect changes such as
statement reordering, insertion and

 K Venkata Ramana and Dr K Venu Gopala Rao 94

control replacement.
CP-Miner Frequent subsequence &

tokenization
Same syntax but different semantic are
detected as copy
paste segments

Clone-
Detection

Frequent item set mining It does not detect complicated changes
i.e. statement reordering, insertion and
control replacement.

XSnippet Graph mining XSnippet is limited to the queries of a
specific set of frameworks or libraries.

MAPO Frequent sequence mining It does not synthesized code fragments
from mined frequent can be directly
inserted into developers’ code.

ParseWeb Clustering It only suggests the frequent MISs and
code samples cannot directly generate
compliable code.

The above carried out analysis will help to define the new technique and tools for the complete

analysis based on the completeness of the proposed matrix.

VI. GOALS OF THE FURTHER RESEARCH

The further research direction clearly indicates enhancement in the code mining technique and
implementation of a consolidated report generation tool as a final outcome of the research.

Code Mining based on Data Mining is a widely adopted technique and the data mining techniques
are very useful for generating information for report generation and prediction processes. Hence the
existing works clearly demonstrate the following data mining techniques to be adopted and evaluated:

 Software Classification Modelling: In the parallel researches the outcome of quality

classification with the help of the existing dataset of software matrices is been demonstrated.
However the approach used one software project matrices generated during the development
process. To make the classification more robust, the researchers tried incorporating multiple
other software project data. However the dataset from different projects are not compatible with
the initial dataset. Hence a manual time consuming approach is been carried out to normalize the
data. The work of Yi Liu et al. is to be considered as a bench mark for this model of work.

 Association Based Rule Mining Method: Use of Data Mining rules for establishing the

correlation and prediction of software defects from the software matrices are also been proposed
in parallel researches. The research conclusions are been applied to multiple project data for
more efficient detection of software defects. The novel approach proposed by Song et al. is a
notable mark in this direction of research and the approach proposed by them is also been
compared with the PART or C4.5 algorithms to demonstrate the improvement. However this is to
be understood that, generalizing the algorithm for over 150 projects is not a simple task and the
approach can focus rather on normalization of the data.

 Software Defect Prediction using Classifiers: In other parallel tracks or researches also

demonstrates the use of 22 most popular algorithms for data classification for defect prediction.
The outcome of the research demonstrates that the algorithms demand the initial dataset to be in
multiple dissimilar formats to be analysed. However the clarification algorithms demonstrate the
same efficiency in detecting the defects. The work for Lessmann et al. is a benchmark for the
comparative study.

Thus the following issues are to be addressed:

Investigation of Source Code Mining using Novel Code Mining Parameter Matrix: Recent State of Art 95

a) Implementation of novel framework for rule mining techniques and tools reducing Identify the
function pairs that is been inferred, Item Set Mining, Graph based Mining Analysis and
Variable Correlation Analysis

b) Implementation of novel framework for detecting source code cloning featuring Suffix Tree
based analysis and Cloning Analysis

c) Implementation of novel framework for detecting faulty use of software APIs demonstrating
Analysis of Signature, Analysis of API calls in sequence and Analysis of Remote method
invocations

VII. CONCLUSION

This work comprehensively analyses of three different and most popular types of code mining
techniques with the light of existing code mining tools. Rule mining techniques, source code cloning
and framework for detecting faulty use of software APIs are been analysed. This work also analyses
the strengths and shortcomings of the tools and technologies. The work proposes a complete and
inclusive software matrix for performing a detail code mining and record the analysis for further
prediction. Also the outcome of this work includes a complete road map for the further research
directions with most desired features.

In the overall future direction of this work is a widespread framework for code mining.

REFERENCES

[1] A. Hassan, and T. Xie, “Mining software engineering data,” in Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering- Volume 2, 2010, pp. 503-504.

[2] D. Engler, D. Chen, S. Hallem et al., “Bugs as deviant behaviour: A general approach to
inferring errors in systems code,” ACM SIGOPS Operating Systems Review, vol. 35, no. 5, pp.
57-72, 2001.

[3] Z. Li, and Y. Zhou, “PR-Miner: Automatically extracting implicit programming rules and
detecting violations in large software code,” in Proceedings of the 10th European software
engineering conference held jointly with 13th ACM SIGSOFT international symposium on
Foundations of software engineering, 2005, pp. 306-315.

[4] M. Ramanathan, A. Grama, and S. Jagannathan, “Path-sensitive inference of function
precedence protocols,” in 29th International Conference on Software Engineering (ICSE 2007),
2007, pp. 240-250.

[5] R. Chang, A. Podgurski, and J. Yang, “Finding what's not there: a new approach to revealing
neglected conditions in software,” in Proceedings of the 2007 international symposium on
Software testing and analysis, 2007, pp. 163-173.

[6] S. Lu, S. Park, C. Hu et al., “MUVI: automatically inferring multi-variable access correlations
and detecting related semantic and concurrency bugs,” ACM SIGOPS Operating Systems
Review, vol. 41, no. 6, pp. 103-116, 2007.

[7] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: a multilinguistic token-based code clone
detection system for large scale source code,” IEEE Transactions on Software Engineering, pp.
654-670, 2002.

[8] B. Baker, “On finding duplication and nearduplication in large software systems,” in
Proc.Second IEEE Working Conf. Reverse Eng., 1995, pp. 86-95.

[9] V. Wahler, D. Seipel, J. Wolff et al., “Clone detection in source code by frequent itemset
techniques,” in Fourth IEEE International Workshop on Source Code Analysis and
Manipulation, 2004, pp. 128-135.

[10] W. Qu, Y. Jia, and M. Jiang, “Pattern mining of cloned codes in software systems,” Information
Sciences, 2010, 2010.

[11] Z. Li, S. Lu, S. Myagmar et al., “CP-Miner: A tool for finding copy-paste and related bugs in
operating system code,” in Proceedings of the 6th conference on Symposium on Operating
Systems Design & Implementation-Volume 6, 2004, pp. 20.

 K Venkata Ramana and Dr K Venu Gopala Rao 96

[12] M. Acharya, T. Xie, J. Pei et al., “Mining API patterns as partial orders from source code: from
usage scenarios to specifications,” in Proceedings of the 6th joint meeting of the European
software engineering conference and the ACM SIGSOFT symposium on The foundations of
software engineering, 2007, pp. 25-34.

[13] D. Mandelin, L. Xu, R. Bodík et al., “Jungloid mining: helping to navigate the API jungle,”
ACM SIGPLAN Notices, vol. 40, no. 6, pp. 48-61, 2005.

[14] A. Michail, “Data mining library reuse patterns using generalized association rules,” in
Proceedings of 22nd International Conference on Software Engineering (ICSE'00), Limerick,
Ireland, 2000, pp.167-176.

[15] N. Sahavechaphan, and K. Claypool, “XSnippet:mining for sample code,” ACM SIGPLAN
Notices, vol. 41, no. 10, pp. 413-430, 2006.

[16] C. Catal titled “Software fault prediction: A literature review and current trends published at
Expert Systems with Applications Elsevier on 2011.

[17] A. G. Koru and H. Liu titled “Building Defect Prediction Models in Practice” published at
Software IEEE Transactions on 2005.

[18] M. Mertic, M. Lenic, G. Stiglic and P. Kokol titled “Estimating Software Quality with
Advanced Data Mining Techniques” published at Software Engineering Advances International
Conference on 2006 at Tahiti.

Investigation of Source Code Mining using Novel Code Mining Parameter Matrix: Recent State of Art 97

About the Authors:

Mr.K Venkata Ramana was born in Guntur, Andhra Pradesh, in 1978. He received the M.Tech.
degree in Computer Science & Engineering from JNT University, Hyderabad in 2010. He is
currently pursuing Ph.D. degree in Computer Science & Engineering from JNT University,
Hyderabad.He has 15 years of teaching experience. From 2006, he is working as an Associate
Professor in the Department of Computer Science & Engineering, Bhoj Reddy Engineering College
for Women, Hyderabad, Telangana, India. From 2001 to 2005, he worked as an Assistant Professor
in the Department of Computer Applications, St. Johns Institute of Science & Technology,
Hyderabad, Telangana, India. His research areas of interests are Data Mining, Machine Learning,
Software Engineering, with an emphasis on mining software engineering data and software
verification.

Dr K Venu Gopala Rao was born in Vijayawada, Andhra Pradesh, in 1963. He received the B.Tech.
degree in Electronics and Communication Engineering from JNT University, Hyderabad in 1985, the
M.Tech. degree in Computer Science and Engineering from the JNT University, Hyderabad in 1997
and Ph.D. degree in the area of Computer Science & Engineering from Osmania University,
Hyderabad in 2008. From 2006, he is working as Professor, Department of Computer Science and
Engineering at G.Narayanamma institute of technology and science (GNITS) Shaikpet, Hyderabad.
From 2002 to 2006, he was an Associate Professor, in the Department of Computer Science and
Engineering at G.Narayanamma Institute of Technology & Science Shaikpet, Hyderabad. From 1999
to 2002, he was an Associate Professor in the Department of Computer Science and Engineering at
Koneru Lakshmaiah College of Engineering, Vijayawada, Greenfields, Vadeesvaram, Guntur. From
1997 to 99, he was an Assistant Professor in the Department of Computer Science and Engineering
at VR Siddhartha Engineering college, Vijayawada. From 1992 to 1995, he was an Assistant
Professor, Department of computer science & Engineering at JNTUCE, Hyderabad (1992-1995).
From 1989 to 1992, he was a Technical Officer in CSG Group at ECIL Hyderabad. From 1988 to
1989 he was a Quality control engineer at Ashok Leyland, Hyderabad (1988-1989). From 1985 to
1988, he was an Engineer (Maintenance) at Radiant Cables Ltd, Hyderabad (1985-1988). His
research interests include Network Security, data mining, statistical methods and their applications to
software engineering.

