International Journal of Latest Trends in Engineering and Technology (IJLTET) ISSN: 2278-621X

An Approximation Algorithm for Vertex Cover
Problem

Nishant Jain
Student, School of Computer Science
D.A. University, Indore, M.P, India

Shipra Shukla
Student, School of Computer Science
D.A. University, Indore, M.P, India

Abstract- The Vertex Cover problem fascinates computer scientists and surfaces in various real world applications. This
problem has been proved NP complete in recent future. Therefore one needs to look for polynomial time approximation
algorithms to solve the problem. Many algorithms have been developed yet which can find an approximate answer to the
problem. We have designed an approximation algorithm to solve vertex cover problem. This algorithm is tested on a large
number of graphs adopted from literature [1]. Proposed approximation algorithm yields better covers than 2-
approximation algorithm. Proposed algorithm offers superior running time than brute force strategy.

Keywords- Minimum vertex cover, Approximation algorithm, Breaking graph, Rejoining etc.

I. INTRODUCTION

Richard Karp presented a list of 21 NP-complete problems in his paper “Reducibility among Combinatorial
Problems” in 1972. One of these 21 NP-complete problems to appear in the list is the vertex cover problem. In
computational complexity theory it is a classical NP-complete problem; therefore it is unlikely to be solved in
polynomial time for the worst case problem instance. The minimum vertex cover problem includes graph theory and
finite combinatory.

In a given graph, we have to find a smallest set of vertices such that every edge of the graph has at least one
end vertex in the set. It covers all the edges of the given graph. Even though the problem is NP-complete, it can be
solved in polynomial time for bipartite graphs and tree graphs, but for worst case graphs polynomial time algorithms
are unlikely to exist.

Two versions of vertex cover problem are the decision version and the optimization version. In the decision version,
the goal is to verify for a given graph whether there exists a vertex cover of a specified size or not. On the other
hand, in the optimization version of this problem, the goal is to find a minimum vertex cover out of all feasible
covers. Our algorithm is working on the second one i.e. optimization problem.

II. PROPOSED ALGORITHM (INFORMAL DESCRIPTION)
The algorithm works in two phases:
1. Breaking the graph-

In the breaking phase we select a set of vertices on the basis of their degree. Choose a maximum degree vertex then
remove this vertex and corresponding edges from the graph. Store this vertex into a stack and also maintain a record
of its neighbors. Now choose a neighbor of this maximum degree vertex and delete this neighbor vertex and
corresponding edges. Store it into a stack and maintain a record of its neighbors. Again choose the maximum degree
vertex and repeat the process until the graph becomes edgeless. Now we have a set of vertices stored in a stack. This
set will be used in the rejoining phase.

2. Rejoining-

http://dx.doi.org/10.21172/1.71.034 240 Vol 7 issue 1 May 2016

International Journal of Latest Trends in Engineering and Technology (IJLTET) ISSN: 2278-621X

Selected set of vertices are again applied to the graph in reverse order to find the vertex cover. Initially the cover is

empty. Pick a cover from the list of cover nodes and delete it from the list. Add a vertex from the top of the stack to

the and check the following three conditions:

1) If all the neighbors (n) of the vertex are present in the cover then do not add it to the cover.

ii) If (n-1) neighbors are present in the cover then either add the node or neighbor to the cover. Now it will generate

two covers — one having the node and other having the neighbor. Store the second cover into a list of cover nodes.
iii) If less than (n-1) nodes are present in the cover then add the vertex to the cover.

Repeat this process until the whole set of vertices becomes empty and show the generated cover as output. Now pick

the second cover and delete it from the list of cover nodes. Apply all the vertices from the selected set on this cover

and compare the generated answer to the previous one. If the second cover is less than the previous cover, show it as

output. Repeat the process for limited number of times according to our need. If we increase the limit then more

number of cover nodes will be processed and we will get better answer but processing time will increase.

This algorithm will generate number of outputs and each time the generated output will be better than the previous

output.

Code

int VertexCover(const Graph& a)

{

Vertex* b = new Vertex|[N];
Graph temp = a;
int j =0; int odd = 1;
while(temp.NodeCount()!=0){
if(odd==1){
int id = temp.MaxDegreeVertex();

b[j]= temp.GiveVetexInfo(id);

Jt
temp.RemoveVertex(id);
odd=0;

H

else{

int id = b[j-1].Adjacent[0];
b[j]= temp.GiveVetexInfo(id);
Jtts
temp.RemoveVertex(id);
odd=1;

H

H
CoverNode p;

p-Size = 0;
pJ=1J;
Stack C;
C.Push(p);
CoverNode q;
int Min = N;
int counter=0;
while(C.StackEmpty()!=1) {
if(counter==10) // Increase the value of counter to get better result

http://dx.doi.org/10.21172/1.71.034 241 Vol 7 issue 1 May 2016

International Journal of Latest Trends in Engineering and Technology (IJLTET) ISSN: 2278-621X

break;
counter++;
q = C.Pop();
(CR)E
intj=q.j;

while(j >=0){
if(q.Size>=Min)
break;
int ee = Min - q.Size;
if((j/2)>ee)
break;
Apply(q.j,b,C);
J=
}
if(q.Size < Min){
if(j==-1){
pP=q;
Print(&p);
Min = q.Size;
}
H
H
Print(&p);
}

III. ANALYSIS

The analysis performed on the proposed algorithm shows that it is a polynomial time algorithm. As we take a look
on the breaking phase, the number of time it will break the graph can’t be greater than the total number of nodes in
the graph. Because the loop is running till the node count is zero. So the running time of the processes will be
polynomial.
In the rejoining phase we will add the previously selected set of vertices to the vertex cover. There are two loops
working for this phase. Number of iterations for the first loop will be 10 because we are taking first 10 covers from
the vertex cover list for processing. For second loop the number of iteration will be equal to the number of vertices
in the selected set. The number of selected vertices will always be less than the total number of vertices. So this
phase also generates a polynomial time solution. Thus we can conclude that the given algorithm is a polynomial
time algorithm.
The proposed algorithm is much better than 2- approximation algorithm. In the breaking phase we are selecting the
vertices on the basis of 2- approximation with some modifications (taking the max degree vertex and its neighbor
each time). So it will generate a reduced set of vertices than that of 2- approximation. Again we are reducing this set
in the rejoining phase to find a better vertex cover. Thus, the produced cover will be much better than 2-
approximation.
We have discussed here some key points that we have used for the development of algorithm. We have selected
maximum degree vertex for breaking the graph so that the graph can be broken easily. We have applied top down
approach for breaking the graph and bottom up approach for reconstruction. We have applied the concept of partial
divide and conquer technique.

IV. CONCLUSION

The proposed algorithm is giving the optimal answer for most of the graphs. For small graphs the algorithm is
giving almost exact answer and for large graph the answer is not exact but very close to it. The algorithm will give
better answer if we increase the limit of counter variable. As we increase the limit of counter variable it will process
more number of vertex covers and find a better answer than the previous one.

http://dx.doi.org/10.21172/1.71.034 242 Vol 7 issue 1 May 2016

International Journal of Latest Trends in Engineering and Technology (IJLTET) ISSN: 2278-621X

V. ACKNOWLEDGEMENT

We have no words to express our gratitude towards my guide Dr. Deepak Abhyankar, Software Engineer, School of
Computer Science And Information Technology, DA University, Indore who has provided all the essential material
for the research paper. His guidance and motivation encouraged us and provided us an idea on how to work for this
paper. We are highly thankful to him.

REFERENCES

http://www.dharwadker.org/vertex cover/,2016

(1]
[2] https://en.wikipedia.org/wiki/Vertex_cover,2016
[3] http://www.dharwadker.org/pirzada/applications/2016
[4] R.M. Karp, Reducibility among combinatorial problems, Complexity of Computer Computations, Plenum Press, 1972.
[5] Stanley Lippman, Essential C++, Addison-Wesley, 2000.
[6] Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L. (1990). Introduction to Algorithms (first ed.). MIT Press and McGraw-Hill.
ISBN 978-0-262-03141-7.
APPENDIX
Vertex* a;
#include <iostream> public:
#include<fstream> Graph(ifstream& File){
#include<string> int number;
using namespace std; vertexCount = N;
int N; a=new Vertex[N];
int stop; int j=0;
struct Vertex { int count;
int vertexId; while(j <N){
int neighbourCount; count = 0;
int* Adjacent; afj].vertexId = j;
Vertex& operator= (const Vertex& other) { a[j].Adjacent = new int[N-1];
if(this!=&other) { intk =0;
vertexId = other.vertexId; while(k < N){
neighbourCount = other.neighbourCount; File >> number:;
Adjacent = new int[neighbourCount]; if(number==1){
intj = 0; a[j].Adjacent[count] = k;
while(j<neighbourCount){ count++;
Adjacent[j]=other.Adjacent[j]; }
s k++;
}
} }

return *this; a[j].neighbourCount = count;

} it

class Graph{
int vertexCount; }

http://dx.doi.org/10.21172/1.71.034 243 Vol 7 issue 1 May 2016

International Journal of Latest Trends in Engineering and Technology (IJLTET) ISSN: 2278-621X

int NebCount(int id) const{ it
return afid].neighbourCount; }
} if(count >0){
a[id].neighbourCount = 0;
int NodeCount() const{ delete a[id].Adjacent;
return vertexCount; vertexCount--;
H H
Graph(const Graph& ob){ }
vertexCount = ob.vertexCount; int GiveNeighbour(int id) const{
a=new Vertex|[N]; return afid].Adjacent [0];
intj=0;
while(j<N){ }
a[j].neighbourCount =
ob.a[j].neighbourCount; int LeastDegreeVertex() const{
a[j].vertexId = j; int count = N;
int count = a[j].neighbourCount; intj=0;
a[j].Adjacent = new int[count]; int result = -1;
intk =0; while(j <N){
while(k < count){ if(a[j].neighbourCount){
a[j].Adjacent[k] = ob.a[j].Adjacent[k]; if((a[j].neighbourCount)<count){
k++; result=j;
} count = a[j].neighbourCount;
jth H
} }
H Jt
H
void RemoveEdge(int c,int d){ return result;
int count = a[c].neighbourCount; }
intj=0; int MaxDegreeVertex(){
while(j<count){ int count = 0;
if((a[c].Adjacent[j])==d) intj=0;
break; int result;
it while(j < N){
} if((a[j].neighbourCount)>count){
a[c].Adjacent[j] = a[c].Adjacent[count-1]; result=j;
a[c].neighbourCount--; count = a[j].neighbourCount;
if(a[c].neighbourCount==0){ }
delete a[c].Adjacent; i+t
vertexCount--; }
} return result;
} H
void RemoveVertex(int id){ Vertex GiveVetexInfo(int j){
int count = a[id].neighbourCount; return afj];
intj=0; }
while(j < count){
int neb = a[id]. Adjacent[j]; };
RemoveEdge(neb,id);

http://dx.doi.org/10.21172/1.71.034 244 Vol 7 issue 1 May 2016

International Journal of Latest Trends in Engineering and Technology (IJLTET)

struct CoverNode{
int Size;
int j;
int* x;
CoverNode(){
x =new int[N-1];
H
15

void Print(Vertex* v){
intj=0;
cout << " Nebs" << endl;
while(j < v->neighbourCount){

cout <<" " << v->Adjacent[j];
Jtts
H
H
void Print(CoverNode* Answer){
cout << "\n answer=";

cout << Answer->Size;
cout << endl,;

/*
intj=0;
int m = Answer->Size;
while(j <m){
/I cout <<" " << Answer->x[j] <<" ";
s
b
*/
b

class Stack{
CoverNode* y;
int Top;
public:
Stack(){
y =new CoverNode[N+1];
Top =-1;
}
void Push(CoverNode& e){
T0p++;
y[Top] =e¢;
H
CoverNode Pop(){
Top--;
return y[Top+1];
H

http://dx.doi.org/10.21172/1.71.034 245

ISSN: 2278-621X

int StackEmpty(){
if(Top==-1)
return 1;
return 0;

}
15

int Search(int* a, int n, int k){
intj=0;
while(j <n){
if(a[j]==k)
return 1;
Jts
}
return -1;
§
// Stack C;
void Apply(CoverNode& g, int i, Vertex* b, Stack&
)
{
qj=1i
int* a = b[i].Adjacent;
int ncount = b[i].neighbourCount;

int* d = q.x;

int size = q.Size;
int s =0;

int j=0;

int e;

while(j < ncount){
if(Search(d,size,a[j])==1)
s++;
else{

e=afjl;

}
Jts

H

if(s==ncount){

return;
H
d[size]= b[i].vertexId;
q.Size = q.Size +1;
if(s<ncount-1)
return;
CoverNode z;
z.Size = q.Size;
zZj=1;
intJ=0;
while(J <z.Size){

Vol 7 issue 1 May 2016

International Journal of Latest Trends in Engineering and Technology (IJLTET) ISSN: 2278-621X

zx[J] = q.x[J]; counter++;
J++ q = C.Pop();
) (@)
z.x[z.Size-1] =e; intj=q.j;
while(j >=0){
C.Push(z); if(q.Size>=Min)
} break;
int ee = Min - q.Size;
int VertexCover(const Graph& a){ if((j/2)>ee)
break;
Vertex* b =new Vertex[N]; Apply(q,j,b,C);
-
Graph temp = a;
H
int j = 0; int odd = 1; if(q.Size < Min){
while(temp.NodeCount()!=0){ if(j==-1){
if(odd==1){ P=q
Print(&p);
int id = temp.MaxDegreeVertex(); Min = q.Size;
}
b[j]= temp.GiveVetexInfo(id); }
H
s Print(&p);
temp.RemoveVertex(id); }
odd=0;
} /* run this program using the console pauser or add
else{ your own getch, system("pause") or input loop */
int id = b[j-1].Adjacent[0];
b[j]= temp.GiveVetexInfo(id); int main(int argc, char** argv) {
Jt
temp.RemoveVertex(id); ifstream File;
odd=1; File.open("graph450.txt");
File >> N;
cout <<"total number of nodes=" <<N;
} Graph a(File);
} VertexCover(a);
File.close();
CoverNode p; return 0;
p-Size = 0; }
P =1
Stack C;
C.Push(p);
CoverNode q;
int Min = N;

int counter=0;

while(C.StackEmpty()!=1) {
if(counter==10)

// Increase the value of counter to get better result
break;

http://dx.doi.org/10.21172/1.71.034 246 Vol 7 issue 1 May 2016

